DOI QR코드

DOI QR Code

Investigation of thorium separation from rare-earth extraction residue via electrosorption with carbon based electrode toward reducing waste volume

  • Aziman, Eli Syafiqah (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Ismail, Aznan Fazli (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Muttalib, Nabilla Abdul (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Hanifah, Muhammad Syafiq (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
  • Received : 2020.11.10
  • Accepted : 2021.03.31
  • Published : 2021.09.25

Abstract

Rare-earth (RE) industries generate a massive amount of radioactive residue containing high thorium concentrations. Due to the fact that thorium is considered a non-economic element, large volume of these RE processed residues are commonly disposed of without treatment. It is essential to study an appropriate treatment that could reduce the volume of waste for final disposition. To this end, this research investigates the applicability of carbon-based adsorbent in separating thorium from aqueous phase sulphate is obtained from the cracking and leaching process of solid rare-earth by-product residue. Adsorption of thorium from the aqueous phase sulphate by carbon-based electrodes was investigated through electrosorption experiments conducted at a duration of 180 minutes with a positive potential variable range of +0.2V to +0.6V (vs. Ag/AgCl). Through this research, the specific capacity obtained was equivalent to 1.0 to 5.14 mg-Th/g-Carbon. Furthermore, electrosorption of thorium ions from aqueous phase sulphate is found to be most favorable at a higher positive potential of +0.6V (vs. Ag/AgCl). This study's findings elucidate the removal of thorium from the rare-earth residue by carbon-based electrodes and simultaneously its potential to reduce disposal waste of untreated residue.

Keywords

Acknowledgement

This research was financially supported by the Universiti Kebangsaan Malaysia under grant number (DIP-2020-022) and Lynas Malaysia Sdn. Bhd (ST-2018-014). The authors express gratitude to the staffs of the Nuclear Science Program, UKM for their technical support throughout the research.

References

  1. M.H. Rabir, A.F. Ismail, M.S. Yahya, Review of the microheterogeneous thoriaurania fuel for micro-sized high temperature reactors, Int. J. Energy Res. (2020) er.5923, https://doi.org/10.1002/er.5923.
  2. OECD-NEA, Organisation for Economic Co-operation and Development, Nuclear Energy Agency; International Atomic Energy Agency (IAEA), Uranium Resources 2011: Production and Demand; Nuclear Energy Agency (NEA): Andre-Pascal, Paris, France, 2012.
  3. S.F. Ashley, G.T. Parks, W.J. Nuttall, C. Boxall, R.W. Grimes, Thorium fuel has risks, Nature 492 (2012) 31-33, https://doi.org/10.1038/492031a.
  4. J. Arnold, T.L. Gianetti, Y. Kashtan, Thorium lends a fiery hand, Nat. Chem. 6 (554) (2014), https://doi.org/10.1038/nchem.1952.
  5. USGS, United States Geological Survey, Thorium. Minerals Yearbook 2011, United States Geological Survey, Reston, Virginia, United States, 2013, pp. 76.1-76.3. http://minerals.usgs.gov/minerals/pubs/commodity/thorium/myb1-2011-thori.pdf. (Accessed 20 November 2019).
  6. OECD-NEA, Organisation for Economic Co-Operation and Development, Nuclear Energy Agency, Introduction of Thorium in the Nuclear Fuel Cycle, Nuclear Energy Agency (NEA): Issy-lesMoulineaux, France, 2015, pp. 21-32.
  7. B.W. Jordan, R.G. Eggert, B.W. Dixon, B.W. Carlsen, Thorium: crustal abundance, joint production, and economic availability, Resour. Pol. 44 (2015) 81-93, https://doi.org/10.1016/j.resourpol.2015.02.002.
  8. S.S. Kim, G.N. Kim, U.R. Park, J.K. Moon, Development of a practical decontamination procedure for uranium-contaminated concrete waste, J. Radioanal. Nucl. Chem. 302 (1) (2014) 611-616, https://doi.org/10.1007/s10967-014-3178-y.
  9. C.N.A.C.Z. Bahri, A.F. Ismail, A.A. Majid, M.I.F. Mohd Ruf, W.M. Al-Areqi, Extraction and purification of thorium oxide (ThO2) from monazite mineral, Sains Malays. 47 (8) (2018) 1873-1882, https://doi.org/10.17576/jsm-2018-4708-28.
  10. C.N.A.C.Z. Bahri, A.F. Ismail, A.A. Majid, Synthesis of thorium tetrafluoride (ThF4) by ammonium hydrogen difluoride (NH4HF2), Nucl. Eng. Technol. 51 (3) (2019) 792-799, https://doi.org/10.1016/j.net.2018.12.023.
  11. A.H.J. Mohd Salehuddin, A.F. Ismail, C.N.A.C.Z. Bahri, E.S. Aziman, Economic analysis of thorium extraction from monazite, Nucl. Eng. Technol. 51 (2) (2019) 631-640, https://doi.org/10.1016/j.net.2018.11.005.
  12. W. Bisset, H. Jacobs, N. Koshti, P. Stark, A. Gopalan, Synthesis and metal ion complexation properties of a novel polyethyleneimine N-methylhydroxamic acid water soluble polymer, React. Funct. Polym. 55 (2) (2003) 109-119, https://doi.org/10.1016/S1381-5148(02)00199-2.
  13. H. Heshmati, H.G. Gilani, M. Torab-Mostaedi, A. Haidary, Adsorptive removal of thorium (IV) from aqueous solutions using synthesised polyamidoxime chelating resin: equilibrium, kinetic, and thermodynamic studies, J. Dispersion Sci. Technol. 35 (4) (2014) 501-509, https://doi.org/10.1080/01932691.2013.796886.
  14. M.A. Mahmoud, A. Abutaleb, I.M.H. Maafa, I.Y. Qudsieh, E.A. Elshehy, Synthesis of polyvinylpyrrolidone magnetic activated carbon for removal of Th (IV) from aqueous solution, Environ. Nanotechnol. Monit. Manag. 11 (2019), https://doi.org/10.1016/j.enmm.2018.10.006.
  15. F. Meng, Q. Liu, R. Kim, J. Wang, G. Liu, A. Ghahreman, Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: leaching optimization and kinetic analysis, Hydrometallurgy (2019), 105160, https://doi.org/10.1016/j.hydromet.2019.105160.
  16. E.S. Aziman, A.F. Ismail, Progress in Nuclear Energy Frontier looking of rareearth processed residue as sustainable thorium resources: an Insight into chemical composition and separation of thorium, Prog. Nucl. Energy 128 (2020), 103471, https://doi.org/10.1016/j.pnucene.2020.103471.
  17. A.F. Ismail, M.S. Yim, Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater, Nucl. Eng. Technol. 47 (5) (2015) 579-587, https://doi.org/10.1016/j.net.2015.02.002.
  18. M. Dai, L. Xia, S. Song, C. Peng, J.R. Rangel-Mendez, R. Cruz-Gaona, Electrosorption of As(III) in aqueous solutions with activated carbon as the electrode Applied Surface, Science 434 (2018) 816-821, https://doi.org/10.1016/j.apsusc.2017.10.238.
  19. C.C. Huang, S.F. Siao, Removal of copper ions from an aqueous solution containing a chelating agent by electrosorption on mesoporous carbon electrodes, J. Taiwan Inst. Chem. Eng. 85 (2018) 29-39, https://doi.org/10.1016/j.jtice.2018.02.005.
  20. X. Zhao, B. Jia, Q. Sun, G. Jiao, L. Liu, D. She, Removal of Cr6+ ions from water by electrosorption on modified activated carbon fibre felt, R. Soc. Open Sci. 5 (180472) (2018), https://doi.org/10.1098/rsos.180472.
  21. C. Liu, P.C. Hsu, J. Xie, J. Zhao, T. Wu, H. Wang, Y. Cui, A half-wave rectified alternating current electrochemical method for uranium extraction from seawater, Nat. Energy 2 (4) (2017), https://doi.org/10.1038/nenergy.2017.7.
  22. IAEA, Combined Methods for Liquid Radioactive Waste Treatment, 2003. IAEA-TECDOC-1336.
  23. Z. Zhi-wei, X. Guo-xuan, L. Yun-hai, C. Xiao-hong, X. Zhi-bin, Removal of thorium(IV) from aqueous solutions by carboxyl-rich hydrothermal carbon spheres through low-temperature heat treatment in air, Desalination Water Treat. 54 (9) (2015) 2516-2529, https://doi.org/10.1080/19443994.2014.899520.
  24. A. Ahmad, S. Pardeep, R. Pankaj, A. Ioannis, S. Selvaraju, L.D. Guilherme, L. Mohammad, I. Andrei, Z.K. George, H.B. Ahmad, Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid, Colloid. Surface. Physicochem. Eng. Aspect. (2020) 8-31, https://doi.org/10.1016/j.colsurfa.2020.125516.
  25. E.S. Aziman, A.F. Ismail, IOP Conf. Ser. Mater. Sci. Eng. 785 (2020), 012014, https://doi.org/10.1088/1757-899X/785/1/012014.
  26. S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkoski, The characterisation of activated carbons with oxygen and nitrogen surface groups, Carbon 35 (12) (1997) 1799-1810, https://doi.org/10.1016/S0008-6223(97)00096-1.
  27. C.D. Liang, S. Dai, Synthesis of mesoporous carbon materials via enhanced hydrogenbonding interaction, J. Am. Chem. Soc. 128 (2006) 5316-5317. https://doi.org/10.1021/ja060242k
  28. J. Saleem, U. Shahid, M. Bin Hijab, H. Mackey, G. Mckay, Production and Applications of Activated Carbons as Adsorbents from Olive Stones, Biomass Conversion and Biorefinery, 2019, pp. 775-802.
  29. I.G. Kim, S.S. Kim, G.N. Kim, G.S. Han, J.W. Choi, Reduction of radioactive waste from remediation of uranium-contaminated soil, Nucl. Eng. Technol. 48 (3) (2016) 840-846, https://doi.org/10.1016/j.net.2016.01.017.
  30. Mohamed F. Cheira, Performance of poly sulfonamide/nano-silica composite for adsorption of thorium ions from sulfate solution, SN Appl. Sci. 2 (3) (2020) 398, https://doi.org/10.1007/s42452-020-2221-6.
  31. Peng Liu, Wei Qi, YaoFang Du, Zhan Li, Jing Wang, JuanJuan Bi, WangSuo Wu, Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes, Sci. China Chem. 57 (11) (2014) 1483-1490, https://doi.org/10.1007/s11426-014-5204-x.
  32. Dariush Alipour, Ali Reza Keshtkar, Mohammad Ali Moosavian, Adsorption of thorium(IV) from simulated radioactive solutions using a novel electrospun PVA/TiO2/ZnO nanofiber adsorbent functionalized with mercapto groups: study in single and multi-component systems, Appl. Surf. Sci. (2016), S0169433216000751, https://doi.org/10.1016/j.apsusc.2016.01.049.
  33. Guojian Duan, Qiangqiang Zhong, Lei Bi, Liu Yang, Tonghuan Liu, Xiaoning Shi, Wangsuo Wu, The poly(acrylonitrule-co-acrylic acid)-graft-b-cyclodextrin hydrogel for thorium(IV) adsorption, Polymers 9 (12) (2017) 201, https://doi.org/10.3390/polym9060201.
  34. K.H. Park, D.H. Kwak, Electrosorption and electrochemical properties of activated-carbon sheet electrode for capacitive deionisation, J. Electroanal. Chem. 732 (2014) 66-73, https://doi.org/10.1016/j.jelechem.2014.08.020.
  35. W. Xing, C. Liu, Z. Zhou, J. Zhou, G. Wang, S. Zhuo, Z. Yan, Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons, Nanoscale Res. Lett. 9 (1) (2014) 1-8, https://doi.org/10.1186/1556-276X-9-189.
  36. D. Das, D.P. Samal, B.C. Meikap, Preparation of activated carbon from green coconut shell and its characterisation, J. Chem. Eng. Process Technol. 6 (5) (2015), https://doi.org/10.4172/2157-7048.1000248.
  37. K.A. Allen, W.J. McDowell, The thorium sulfate complexes from di-ndecylamine sulfate extraction equilibria, J. Phys. Chem. 67 (1963) 1138-1140, https://doi.org/10.1021/j100799a050.
  38. K.L. Yang, T.Y. Ying, S. Yiacoumi, C. Tsouris, E.S. Vittoratos, Electrosorption of ions from aqueous solutions by carbon aerogel: an electrical double-layer model, Langmuir 17 (6) (2001) 1961-1969, https://doi.org/10.1021/la001527s.
  39. D. Liu, K. Huang, L. Xie, H.L. Tang, Relation between operating parameters and desalination performance of capacitive deionisation with activated carbon electrodes, Environ. Sci.: Water Res. Technol. 1 (4) (2015) 516-522, https://doi.org/10.1039/c5-w00102a.
  40. S. Handley-Sidhu, T.K. Mullan, Q. Grail, M. Albadarneh, T. Ohnuki, L.E. MacAskie, Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite, Sci. Rep. (2016) 4-11, https://doi.org/10.1038/srep23361.
  41. M. Virgen, R.M. Del, O.F.G. Vazquez, V.H. Montoya, R.T. Gomez, Removal of heavy metals using adsorption processes subject to an external magnetic field, in: Heavy Metal IntecOpen Limited: London, United Kingdom, 2018, pp. 253-280, https://doi.org/10.5772/intechopen.74050.
  42. D. Hillel, Environmental Soil Physics, Academic Press, San Diego, CA, 1998.
  43. D. Ghosh, R. Biswas, Theoretical calculation of absolute radii of atoms and ions. Part 2. The ionic radii, Int. J. Mol. Sci. 4 (6) (2003) 379-407, https://doi.org/10.3390/i4060379.
  44. B.P. Sobolev, Lanthanum and lanthanide Trifluorides : lanthanide contraction and volume of fluorine ion, 2, in: Crystallography Reports, vol. 65 Pleiades Publishing, Inc, New York, United States, 2020, pp. 175-181, https://doi.org/10.1134/S1063774520020212.
  45. P.D. Bhalara, D. Punetha, K. Balasubramanian, Kinetic and isotherm analysis for selective thorium(IV) retrieval from aqueous environment using ecofriendly cellulose composite, Int. J. Environ. Sci. Technol. 12 (10) (2014) 3095-3106, https://doi.org/10.1007/s13762-014-0682-0.
  46. B.W. Jordan, R.G. Eggert, An Assessment of the Costs, Opportunities and Challenges for the Front-End of a Thorium Based Fuel Cycle, Technical Report, Colorado School of Mines, Golden, CO, 2014.
  47. IAEA, Management of NORM Residues, 2013. IAEA-TECDOC-1712.
  48. IAEA, International Atomic Energy Agency, Handling and Processing of Radioactive Waste from Nuclear Applications, Technical Reports Series No. 402, 2001.
  49. E.S. Aziman, A.H.J. Mohd Salehuddin, A.F. Ismail, Remediation of thorium (IV) from wastewater: current status and way forward, Separ. Purif. Rev. (2019), https://doi.org/10.1080/15422119.2019.16395199.