DOI QR코드

DOI QR Code

Decontamination of spent ion exchange resins contaminated with iron-oxide deposits using mineral acid solutions

  • Tokar, E.A. (Institute of Chemistry FEBRAS) ;
  • Matskevich, A.I. (Institute of Chemistry FEBRAS) ;
  • Palamarchuk, M.S. (Institute of Chemistry FEBRAS) ;
  • Parotkina, Yu.A. (Institute of Chemistry FEBRAS) ;
  • Egorin, A.M. (Institute of Chemistry FEBRAS)
  • Received : 2020.11.12
  • Accepted : 2021.03.22
  • Published : 2021.09.25

Abstract

The efficiency of decontamination of model spent ion exchange resins, contaminated with magnetite and hematite, with mineral acid solutions, and using electro-decontamination, was evaluated. It has been shown that effective hematite dissolution occurs in concentrated mineral acid solutions. However, the use of direct current increases the decontamination efficiency of spent ion exchange resins contaminated with hematite. It is determined that with increasing voltage and acid concentration, the dissolution efficiency of hematite deposits increases and can exceed 99%. It has been shown that hematite dissolution is accompanied by secondary adsorption of radionuclides due to ion exchange, which can be removed with sodium nitrate solutions.

Keywords

Acknowledgement

Equipment of CUC "Far Eastern Center of Structural Investigations" was used in this work.

References

  1. J.A. Sawicki, Analyses of fuel crud and coolant-borne corrosion products in normal water chemistry BWRs, J. Nucl. Mater. 419 (2011) 85-96, https://doi.org/10.1016/j.jnucmat.2011.08.032.
  2. J.A. Sawicki, P.J. Sefranek, S. Fisher, Depth distribution and chemical form of iron in low cross-linked crud-removing resin beds, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 142 (1998) 122-132, https://doi.org/10.1016/S0168-583X(98)00231-6.
  3. M. Hoshi, E. Tachikawa, T. Suwa, C. Sagawa, C. Yonezawa, I. Aoyama, K. Yamamoto, Crud behaviors in high-temperature water, (I): characterization of water in JMTR OWL-1 loop, J. Nucl. Sci. Technol. 23 (1986) 511-521, https://doi.org/10.1080/18811248.1986.9735014.
  4. T.-L. Tsai, T.-Y. Lin, T.-Y. Su, H.-J. Wei, L.-C. Men, T.-J. Wen, Identification of chemical composition of CRUD depositing on fuel surface of a boiling water reactor (BWR-6) plant, Energy Procedia 14 (2012) 867-872, https://doi.org/10.1016/j.egypro.2011.12.1025.
  5. S. Chaturvedi, P.N. Dave, Removal of iron for safe drinking water, Desalination 303 (2012) 1-11, https://doi.org/10.1016/j.desal.2012.07.003.
  6. K. Otoha, T. Izumi, T. Hayashi, Y. Morikawa, H. Murabayashi, Crud removal performance with ion exchange resins in BWR plants, J. Nucl. Sci. Technol. 33 (1996) 10, https://doi.org/10.1080/18811248.1996.9731861.
  7. I. Inami, T. Baba, Study on the interaction between iron(III) hydroxide oxide and cation exchange resins, Bull. Chem. Soc. Jpn. 68 (1995) 2067-2072, https://doi.org/10.1246/bcsj.68.2067.
  8. S.D. Park, J.S. Kim, S.H. Han, K.Y. Jee, Distribution characteristics of 14C and 3H in spent resins from the Canada deuterium uranium-pressurized heavy water reactors (CANDU-PHWRs) of Korea, J. Radioanal. Nucl. Chem. 277 (2008) 503-511, https://doi.org/10.1007/s10967-007-7112-4.
  9. J. Li, J. Wang, Advances in cement solidification technology for waste radioactive ion exchange resins: a review, J. Hazard Mater. 135 (2006) 443-448, https://doi.org/10.1016/j.jhazmat.2005.11.053.
  10. K. Korpiola, J. Jarvinen, K. Penttila, P. Kotiluoto, Modeling of incineration of spent ion exchange resins of boiling water and pressurized water nuclear reactors, Nucl. Technol. 172 (2010) 230-236, https://doi.org/10.13182/NT10-A10908.
  11. V. Luca, H.L. Bianchi, F. Allevatto, J.O. Vaccaro, A. Alvarado, Low temperature pyrolysis of simulated spent anion exchange resins, J. Environ. Chem. Eng. 5 (2017) 4165-4172, https://doi.org/10.1016/j.jece.2017.07.064.
  12. L. Xu, X. Meng, M. Li, W. Li, Z. Sui, J. Wang, J. Yang, Dissolution and degradation of nuclear grade cationic exchange resin by Fenton oxidation combining experimental results and DFT calculations, Chem. Eng. J. 361 (2019) 1511-1523, https://doi.org/10.1016/j.cej.2018.09.169.
  13. T.-H. Cheng, C.-P. Huang, Y.-H. Huang, Y.-J. Shih, Kinetic study and optimization of electro-Fenton process for dissolution and mineralization of ion exchange resins, Chem. Eng. J. 308 (2017) 954-962, https://doi.org/10.1016/j.cej.2016.09.142.
  14. YuP. Korchagin, E.K. Aref'ev, E.Yu Korchagin, Improvement of technology for treatment of spent radioactive ion-exchange resins at nuclear power stations, Therm. Eng. 57 (2010) 593-597, https://doi.org/10.1134/S0040601510070104.
  15. M. Palamarchuk, A. Egorin, E. Tokar, M. Tutov, D. Marinin, V. Avramenko, Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins, J. Hazard Mater. 321 (2017) 326-334, https://doi.org/10.1016/j.jhazmat.2016.09.005.
  16. J. Zhao, J. Brugger, A. Pring, Mechanism and kinetics of hydrothermal replacement of magnetite by hematite, Geosci. Front. 10 (2019) 29-41, https://doi.org/10.1016/j.gsf.2018.05.015.
  17. P.S. Sidhu, Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids, Clay Clay Miner. 29 (1981) 269-276, https://doi.org/10.1346/CCMN.1981.0290404.
  18. R. Torres, M.A. Blesa, E. Matijevic, Interactions of metal hydrous oxides with chelating agents: IX. Reductive dissolution of hermatite and magnetite by aminocarboxylic acids, J. Colloid Interface Sci. 134 (1990) 475-485, https://doi.org/10.1016/0021-9797(90)90157-J.
  19. S.J. Keny, A.G. Kumbhar, G. Venkateswaran, K. Kishore, Radiation effects on the dissolution kinetics of magnetite and hematite in EDTA- and NTA-based dilute chemical decontamination formulations, Radiat. Phys. Chem. 72 (2005) 475-482, https://doi.org/10.1016/j.radphyschem.2003.12.055.
  20. Z.-Y. Lu, D.M. Muir, Dissolution of Metal Ferrites and Iron Oxides by HCI under Oxidising and Reducing Conditions, vol. 21, 1988, https://doi.org/10.1016/0304-386X(88)90013-8, 13 9-21.
  21. C.A. Lanzl, J. Baltrusaitis, D.M. Cwiertny, Dissolution of hematite nanoparticle aggregates: influence of primary particle size, dissolution mechanism, and solution pH, Langmuir 28 (2012) 15797-15808, https://doi.org/10.1021/la3022497.
  22. T. Echigo, D.M. Aruguete, M. Murayama, M.F. Hochella, Influence of size, morphology, surface structure, and aggregation state on reductive dissolution of hematite nanoparticles with ascorbic acid, Geochem. Cosmochim. Acta 90 (2012) 149-162, https://doi.org/10.1016/j.gca.2012.05.008.
  23. R. Salmimies, M. Mannila, J. Kallas, A. Hakkinen, Acidic dissolution of hematite: kinetic and thermodynamic investigations with oxalic acid, Int. J. Miner. Process. 110-111 (2012) 121-125, https://doi.org/10.1016/j.minpro.2012.04.001.
  24. Christophe Siffert, Barbara Sulzberger, Light-induced dissolution of hematite in the presence of oxalate. A case study, Langmuir 7 (1991) 1627-1634, https://doi.org/10.1021/la00056a014.
  25. M. Taxiarchou, D. Panias, I. Douni, I. Paspaliaris, A. Kontopoulos, Dissolution of hematite in acidic oxalate solutions, Hydrometallurgy 44 (1997) 287-299, https://doi.org/10.1016/S0304-386X(96)00075-8.
  26. L. Chi, J. Semmler, Electrochemical Regeneration of Spent Ion Exchange Resin (No. AECL-CW-127140-CONF-002), Atomic Energy of Canada Limited, 2010. http://inis.iaea.org/Search/search.aspx?orig_q=RN:49101522. (Accessed 4 November 2020).
  27. J. Semmler, L. Chi, Treatment of Liquid Waste and Regeneration of Spent Ion Exchange Resin Using Electrochemical Techniques (No. AECL-CW-127140-CONF-003), Atomic Energy of Canada Limited, 2012. http://inis.iaea.org/Search/search.aspx?orig_q=RN:49101523. (Accessed 4 November 2020).
  28. A. Egorin, E. Tokar, A. Kalashnikova, T. Sokolnitskaya, I. Tkachenko, A. Matskevich, E. Filatov, L. Zemskova, Synthesis and sorption properties towards Sr-90 of composite sorbents based on magnetite and hematite, Materials 13 (2020) 1189, https://doi.org/10.3390/ma13051189.
  29. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD, J. Appl. Crystallogr. 48 (2015) 598-603, https://doi.org/10.1107/S1600576715002319.
  30. A.D. Mercer, E.A. Lumbard, Corrosion of mild steel in water, Br. Corrosion J. 30 (1995) 43-55, https://doi.org/10.1179/000705995798114177.
  31. M.L. Hyman, J.E. Savolainen, Removal of Chloride from Aqueous Solutions, US2919972A, 1960. https://patents.google.com/patent/US2919972A/en?oq=US+2919972+%D0%90. (Accessed 7 November 2020).
  32. I.A. Merkulov, D.V. Tikhomirov, A.I. Korobeinikov, A.S. Dyachenko, A. Yu Zhabin, G.A. Apalkov, V.A. Grigorieva, Method for Extracting Chloride-Ion from Nitrogen-Acute Technological Solutions of Radiochemical Manufacture, RU2678027C1, 2019. https://patents.google.com/patent/RU2678027C1/en?oq=RU+2678027. (Accessed 7 November 2020).
  33. A. Mucke, A. Raphael Cabral, Redox and nonredox reactions of magnetite and hematite in rocks, Geochemistry 65 (2005) 271-278, https://doi.org/10.1016/j.chemer.2005.01.002.
  34. S.V. Yanina, K.M. Rosso, Linked reactivity at mineral-water interfaces through bulk crystal conduction, Science 320 (2008) 218-222, https://doi.org/10.1126/science.1154833.
  35. K.M. Rosso, S.V. Yanina, C.A. Gorski, P. Larese-Casanova, M.M. Scherer, Connecting observations of hematite (α-Fe2O3) growth catalyzed by Fe(II), Environ. Sci. Technol. 44 (2010) 61-67, https://doi.org/10.1021/es901882a.
  36. B.-H. Jeon, B.A. Dempsey, W.D. Burgos, Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides, Environ. Sci. Technol. 37 (2003) 3309-3315, https://doi.org/10.1021/es025900p.
  37. G. Horanyi, F.M. Rizmayer, Catalytic activity of a tungsten carbide electrocatalyst in the reduction of HNO3, HNO2, and NH2OH by molecular hydrogen, J. Electroanal. Chem. Interfacial Electrochem. 132 (1982) 119-128, https://doi.org/10.1016/0022-0728(82)85011-0.