• Title/Summary/Keyword: carbon nanoparticles

Search Result 410, Processing Time 0.022 seconds

Utilizing SnO2 Encapsulated within a Freestanding Structure of N-Doped Carbon Nanofibers as the Anode for High-Performance Lithium-Ion Batteries

  • Ying Liu;Jungwon Heo;Dong-Ho Baek;Mingxu Li;Ayeong Bak;Prasanth Raghavan;Jae-Kwang Kim;Jou-Hyeon Ahn
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.258-266
    • /
    • 2024
  • Rechargeable Li-SnO2 batteries suffer from issues such as poor electronic/ionic conductivity and huge volume changes. In order to overcome these inherent limitations, this study designed a cell with a unique hierarchical structure, denoted as SnO2@PCNF. The SnO2@PCNF cell design incorporates in-situ generated SnO2 nanoparticles strategically positioned within N-doped porous carbon nanofibers (PCNF). The in-situ generated SnO2 nanoparticles can alleviate strains during cycling and shorten the pathway for the ions and electrons, improving the utilization of active materials. Moreover, the N-doped PCNF establishes a continuously conductive network to further increase the electrical conductivity and also buffers the significant volume changes that occur during charging and discharging. The resulting SnO2@PCNF cell exhibits outstanding electrochemical performance and stable cycling characteristics. Notably, a reversible capacity of 520 mAh g-1 was achieved after 100 cycles at 70 mA g-1. Even under a higher current density of 1 A g-1, the cell maintained a capacity retention of 393 mAh g-1 after 1,000 cycles. These results highlight the SnO2@PCNF cell's exceptional cycling stability and superior rate capability.

Ni(OH)2 and NiO Nanostructures: Synthesis, Characterization and Electrochemical Performance

  • Saghatforoush, Lotf Ali;Hasanzadeh, Mohammad;Sanati, Soheila;Mehdizadeh, Robabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2613-2618
    • /
    • 2012
  • Hydrothermal route have been used in different conditions for preparation of $Ni(OH)_2$ nanostructures. The NiO nanoparticles were obtained by calcining the $Ni(OH)_2$ precursor at $450^{\circ}C$ for 2 h. The effect of sodium dodecyl sulfonate (SDS) as surfactant on the morphology and size of $Ni(OH)_2$ nanoparticles were discussed in detail. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the products. The growth mechanism of the as-synthesized nanostructures was also discussed in detail based on the experimental results. Coming up, the NiO nanoparticle modified carbon paste electrode was applied to the determination of captopril in aqueous solution.

Electrocatalysis of Oxygen Reduction by Au Nanoparticles Electrodeposited on Polyoxometalate-Modified Electrode Surfaces

  • Choi, Kyung-Min;Choi, Su-Hee;Kim, Jong-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • The effect of polyoxometalate monolayers on the electrodeposition of Au nanoparticles (AuNPs) on glassy carbon (GC) surfaces was examined by electrochemical and scanning electron microscope techniques. The presence of $SiMo_{12}O^{4-}_{40}$-layers resulted in average particle sizes of ca. 60 nm, which is larger than AuNPs deposited on bare GC surfaces. AuNPs electrodeposited on $SiMo_{12}O^{4-}_{40}$-modified GC surfaces for 20 s exhibited the best electrocatalytic activity for oxygen reduction. This system exhibited similar or slightly better efficiency for oxygen reduction than a bare Au electrode. Rotating disk electrode experiments were also performed and revealed that the catalytic reduction of oxygen on AuNPs deposited on $SiMo_{12}O^{4-}_{40}$-modified GC electrodes is a two-electron process.

Buckling response of smart plates reinforced by nanoparticles utilizing analytical method

  • Farrokhian, Ahmad
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • This article deals with the buckling analysis in the plates containing carbon nanotubes (CNTs) subject to axial load. In order to control the plate smartly, a piezoelectric layer covered the plate. The plate is located in elastic medium which is modeled by spring elements. The Mori-Tanaka low is utilized for calculating the equivalent mechanical characteristics of the plate. The structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The Navier method is applied to obtain the bulking load. The effects of the applied voltage to the smart layer, agglomeration and volume percent of CNT nanoparticles, geometrical parameters and elastic medium of the structure are assessed on the buckling response. It has been demonstrated that by applying a negative voltage, the buckling load is increased significantly.

Electrochemical Method for Detecting Hippuric Acid Using Osmium-antigen Conjugate on the Gold Nanoparticles Modified Screen-printed Carbon Electrodes

  • Choi, Young-Bong;Kim, Hyug-Han
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.57-61
    • /
    • 2011
  • This paper describes an electrochemical immunoassay for simple, fast and quantitative detection of a urinary hippuric acid which is one of major biological indicator in toluene-exposed humans. The electrochemical system of immunoassay was based on the directly osmium complex conjugated with hippuric acid. With the competition between free hippuric acid (HA) and the osmium-hippuric acid conjugate (Os-HA) to bind with antibody hippuric acid (Anti-HA) coated onto gold nanoparticles, the electrical signals were proportional to urinary hippuric acid (HA) in the range of 0.01-5 mg/mL which is enough range to be used for in-field or point-of-care (POC) diagnosis. The proposed electrochemical method can be extended to the applications to detect a wide range of different small molecules in the field of health care.

Simple Electrochemical Immunosensor for the Detection of Hippuric Acid on the Screen-printed Carbon Electrode Modified Gold Nanoparticles

  • Choi, Young-Bong;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • This paper describes an electrochemical immunosensor for simple, fast and quantitative detection of a urinary hippuric acid which is one of major biological indicator in toluene-exposed humans. The feature of this electrochemical system for immunoassay of hippuric acid is based on the direct conjugation of ferrocene to a hippuric acid. With the competition between the ferrocene-hippuric acid complex and hippuric acid for binding to the anti-hippuric acid monoclonal antibody coated onto gold nanoparticles, the electrical signals are turned out to be proportional to urinary hippuric acid in the range of 0.01-10 mg/mL, which is enough to be used for the point-of-care. The proposed electrochemical method could extend its applications to detect a wide range of different small molecules of antigens in the health care area.

Preparation and Performance Analysis of Ophthalmic Polymer Using SWCNT and SWCCNT

  • Shin, Su-Mi;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.735-740
    • /
    • 2019
  • The purpose of this study is to fabricate an ophthalmic lens by copolymerizing two types of carbon nanotubes and hydrophilic hydrogel lens materials, and to investigate its application as an ophthalmic lens material by analyzing its physical properties and antimicrobial effect. For polymerization, HEMA (2-hydroxyethyl methacrylate), EGDMA (ethylene glycol dimethacrylate), a crosslinking agent, and AIBN (azobisisobutyronitrile), an initiator, are used as a basic combination, and a single-walled carbon nanotube and a single-walled, carboxylic-acid-functionalized carbon nanotube are used as additives. To analyze the physical properties, the water content, refractive index, breaking strength, and antimicrobial effect of the fabricated lenses are measured. The fabricated lenses satisfies all the basic properties of the basic hydrogel ophthalmic lens. The water content increases with increasing amount of additive and decreases with addition of 0.2 % ratio of nanoparticles. The refractive index is inversely proportional to the water content result. As a result of the antimicrobial test of the fabricated lens, the addition of carbon nanotubes shows an excellent antimicrobial effect. Therefore, it is considered that the fabricated lens can be applied as a functional material for basic ophthalmic hydrogel lenses.

Synthesis of CNFs(Carbon Nanofibers)/DAAQ electrode for Supercapacitor (슈퍼커패시티용 DAAQ/CNFs 전극의 제조)

  • Lee, Tae-Soo;Lee, Yun-Hee;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1220-1223
    • /
    • 2003
  • A new type electric double layer capacitor (EDLC) was constructed by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. Carbonaceous materials are found in variety forms such as graphite, diamond, carbon fibers etc. While all the carbon nanofibers include impurities such as amorphous carbon, nanoparticles, catalytic metals and incompletely grown carbons. We have eliminated of Ni particles and some carbonaceous particles in nitric acid. Nitric acid treated CNFs could be covered with very thin DAAQ oligomer from the results of CV and TG analyses and SEM images. A crystalline supramolecular oligomer of 1,5-diaminoanthraquinone(DAAQ) was successfully prepared as a thin film by electrochemical oxidation from an acidic non-aqueous medium. DAAQ oligomer film exhibited a specific capacity as 45-50 Ah/kg in 4M $H_2SO_4$. Its electrochemical characteristics were investigated by cyclic voltammetry. And compared with different electrolyte of aqueous type. During ultrasonic irradiation CNFs was to disperse in 0.1M $H_2SO_4$. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors.

  • PDF

Characterization of carbon nanofluids applicable to heat transfer fluids (열전달 유체 적용을 위한 카본 나노유체 특성 분석)

  • Kim, Doo-Hyun;Hwang, Yu-Jin;Kwon, Yeoung-Hwan;Lee, Jae-Keun;Hong, Dae-Seung;Moon, Seong-Young;Kim, Soo-H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.538-541
    • /
    • 2008
  • The carbon laden suspensions in water with no surfactants have poor stability caused by the hydrophobic layer of particles. In this study, the water-based carbon nano colloide(CNC) was successfully produced using electro-chemical one-step method without agent. The properties of CNC were characterized by using various techniques such as particle size analyzer, TEM, FT-IR, turbidity meter, viscometer, and transient hot-wire method. The average size of the suspended in the CNC was 15 nm in diameter. The thermal conductivity of CNC compared with water was increased up to 14% with 4.2wt% concentration. The CNC was stable over 600hr. The enhanced colloidal stability of CNC may be caused by the chemical structures, such as, hydroxide and carboxyl groups formed in outer atomic layer of carbon, which (i) made the carbon nanofparticles hydrophilic and (ii) prevented the aggregation among nanoparticles.

  • PDF