References
- Shiral, M.; Rode, C. V.; Mine, E.; Sasaki, A.; Sato, O.; Hiyoshi, N. Catal. Today 2006, 115, 248 https://doi.org/10.1016/j.cattod.2006.02.048
- Wang, H.; Zhao, F.; Fujita, S.-I.; Arai, M. Catal. Commun. 2008, 9, 362. https://doi.org/10.1016/j.jcat.2007.08.011
- Hiyoshi, N.; Rode, C. V.; Sato, O.; Tetsuka, H.; Shirai, M. J. Catalysis 2007, 252, 57. https://doi.org/10.1016/j.jcat.2007.08.011
- Ohde, H.; Ohde, M.; Wai, C. M. Chem. Commun. 2004, 930. https://doi.org/10.1021/cm020822q
- Rode, C. V.; Joshi, U. D.; Sato, O.; Shirai, M. Chem. Commun. 2003, 1960. https://doi.org/10.1021/jp073786x
- Foss, C. A. Metal Nanoparticles: Synthesis, Characterization, and Applications; Foss, C. A., Ed.; Dekker, New York, 2001
- Yang, C. M.; Liu, P. H.; Ho, Y. F.; Chiu, C. Y.; Chao, K. J. Chem. Mater. 2003, 15, 275. https://doi.org/10.1021/cm020822q
- Zhang, Z. T.; Dai, S.; Blom, S.; Shen, J. Chem. Mater. 2002, 14, 965. https://doi.org/10.1021/ja974025i
- Han, Y. J.; Kim, J. M.; Stucky, G. D. Chem. Mater. 2000, 12, 2068. https://doi.org/10.1039/b310261k
- Zhang, Y.; Lam, F. L.-Y.; Hu, X.; Yan, Z.; Sheng, P. J. Phys. Chem. C 2007, 111, 12536. https://doi.org/10.1021/jp805538j
- Lee, K.-B.; Lee, S.-M.; Cheon, J. Adv. Mater. 2001, 13, 517. https://doi.org/10.1021/jp045917p
- McHugh, M. A.; Krukonis, V. J. Supercritical Fluid Extraction: Principles and Practice; Butterworth, Boston, 1986
- Lee, S.-S.; Park, B.-K.; Byeon, S.-H.; Chang, F.; Kim, H. Chem. Mater. 2006, 18, 5632.
- Fernandes, N. E.; Fisher, S. M.; Poshusta, J. C.; Vlachos, D. G.; Tsapatsis, M.; Watkins, J. J. Chem. Mater. 2001, 13, 2023. https://doi.org/10.1021/cm000837t
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024. https://doi.org/10.1021/ja974025i
- Dhepe, P. L.; Fukuoka, A.; Ichikawa, M. Phys. Chem. Chem. Phys. 2003, 5, 5565 https://doi.org/10.1039/b310261k
- Wang, Z.; Xie, Y.; Liu, C. J. Phys. Chem. C 2008, 112, 19818. https://doi.org/10.1021/jp805538j
- Xu, J.; Zhang, W.; Morris, M. A.; Holmes, J. D. Mater. Chem. Phys. 2007, 104, 50. https://doi.org/10.1016/j.matchemphys.2007.02.043
- Ziegler, K. J.; Harrington, P. A.; Ryan, K. M.; Crowley, T.; Holmes, J. D.; Morris, M. A. J. Phys. Condens. Matter. 2003, 15, 8303. https://doi.org/10.1088/0953-8984/15/49/009
- Bore, M. T.; Pham, H. N.; Switzer, E. E.; Ward, T. L.; Fukuoka, A.; Datye, A. K. J. Phys. Chem. B 2005, 109, 2873 https://doi.org/10.1021/jp045917p
Cited by
- A Study of the Optimum Pore Structure for Mercury Vapor Adsorption vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1507
- Synthesis of nanostructured materials using supercritical CO2: Part II. Chemical transformations vol.47, pp.8, 2012, https://doi.org/10.1007/s10853-011-6064-9
- H) vol.60, pp.5, 2013, https://doi.org/10.1002/jccs.201200530
- Vapour Phase Hydrogenation of Phenol over Rhodium on SBA-15 and SBA-16 vol.19, pp.12, 2014, https://doi.org/10.3390/molecules191220594
- in aqueous media vol.19, pp.15, 2017, https://doi.org/10.1039/C7GC01318C
- Selective phenol hydrogenation to cyclohexanone over Pd@N-doped porous carbon: role of storage under air of recovered catalyst pp.1878-5204, 2018, https://doi.org/10.1007/s11144-018-1438-5
- Experimental Study on Microwave-SiC-Assisted Catalytic Hydrogenation of Phenol vol.33, pp.11, 2019, https://doi.org/10.1021/acs.energyfuels.9b02595
- Review-Supercritical Deposition: A Powerful Technique for Synthesis of Functional Materials for Electrochemical Energy Conversion and Storage vol.167, pp.5, 2009, https://doi.org/10.1149/1945-7111/ab68d1
- Rh-PVP Catalyzed Reductive Amination of Phenols by Ammonia or Amines to Cyclohexylamines under Solvent-free Conditions vol.51, pp.1, 2009, https://doi.org/10.1246/cl.210574