• Title/Summary/Keyword: carbon incorporation

Search Result 157, Processing Time 0.028 seconds

The Influence of Different Adaptation Substrates on Denitrification Rate of the Anaerobic Sludge (적응기질 종류에 따른 혐기성 슬러지의 탈질속도)

  • Park, Sang-Min;Jun, Hang-Bae;Park, Chan-il;So, Kyu-Ho;Park, Noh-Back
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.214-221
    • /
    • 2009
  • Denitrification efficiency associated with incorporation of the diffrent carbon substrates with the anaerobic sludge was investigated. For this each kinetic constant such as methane reaction and specific denitrification rate (SDNR) were determined in each treated sludge. In the pure methanogenesis, the specific methanogenesis activity (SMA) value was the highest at $0.76COD/g\;VSS{\cdot}day$ when the acetate was incorporated with the anaerobic sludge which has already been adapted at consistent C/N ratio 5 for reatively higher denitrifier population. The anaerobic dinitrificaition and methanogenesis reaction were dependent on both the types of carbon substrate and sludge showing the higher denitrificaition reaction constant at $1.96hr^{-1}$ with incorporation of acetate with the anaerobic sludge at C/N ratio 5 than any other carbon sources examined. When the glucose was introduced as electron donor for the anaerobic sludge adapted with different carbon substrates the SDNR showed the highest value with the sludge adapted to glucose followed by the sludge adapted to piggery sludge and acetate.

Structure and Mechanical Properties of Si Incorporated Diamond-like Carbon Films Prepared by PACVD

  • Kim, Myoung-Geun;Park, Jun-Youp;Lee, Kwang-Ryeol;Eun, Kwang-Yong
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.101-104
    • /
    • 1997
  • Although tribological behavior of Si incorporated DLC films have been intensely investigated, their mechanical properties were not consistent among previous publications. The present work reported the structural change by adding Si, and their effects on the mechanical properties. Si incoporated DLC films were deposited using mixtures of benzene and diluted silane with hydrogen of various volume fractions. We could obtain the films of $X_{si}$ (defined by the Si fraction without considering hydrogen) ranging from 0.01 to 0.21, and found that the mechanical properties of the films changed significantly in the range less than $X_{si}=0.06$. In this range, the hardness and stress increased with Xsi. For higher content of Si, the hardness and stress showed saturated behavior with $X_{si}$. This behavior was discussed in terms of the changes in atomic bond structures.

  • PDF

Nanotechnology in elastomers- Myth or reality

  • Shanmugharaj, A.M.;Ryu, Sung-Hun
    • Rubber Technology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Nanotechnology is the fast becoming key technology of the $21^{st}$ century. Due to its fascinating size-dependent properties, it has gained significant important in various sectors. Myths are being formed on the proverbal nanotechnology market, but the reality is the nanotechnology is not a market but a value chain. The chain comprises of - nanomaterials (nanoparticles) and nanointermediates (coatings, compounds, smart fabrics). Elastomer based nanocomposites reinforced with low volume fraction of nanofillers is the first generation nanotechnology products and it has attracted great interest due to their fascinating properties. The incorporation of nanofillers such as nanolayered silicates, carbon nanotubes, nanofibers, metal oxides or silica nanoparticles into elastomers improves significantly their mechanical, thermal, barrier properties, flame retardency etc., Extremely small particle size, high aspect ratio and large interface area yield an excellent improvement of the properties in a wide variety of the materials. Uniform dispersion of the nanofillers is a general prerequisite for achieving desired properties. In this paper, current developments in the area of elastomer based nanocomposites reinforced with layered silicate and carbon nanotube fillers are highlighted.

  • PDF

Characterization of structural and electrical properties of FCVA-produced DLC films as a function of nitrogen incorporation (FCVA 방법에 의해 제작된 DLC 박막의 질소 첨가에 따른 구조적, 전기적 물성분석)

  • Chang, Seok-Mo;Park, Chang-Kyun;Uhm, Hyun-Seok;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1393-1395
    • /
    • 2001
  • DLC films are deposited by using a modified FCVA system. Carbon amorphous network, surface roughness, internal compressive stress, resistivity, and Hall mobility are studied as a function of nitrogen flow rate (0 $\sim$ 10 sccm). As the nitrogen content is increased in the carbon network, the size of $sp^2$ clusters is increased, the internal compressive stress is decreased, and the resistivity is remarkably decreased. The RMS values of the surface roughness are measured to be in the range of 0.2$\sim$0.5nm. The Hall mobility of DLC film with 3 sccm of nitrogen added is 3.22 $cm^2/V{\cdot}$s.

  • PDF

Carbon Nanotube Incoporated Conductive Pastes (탄소나노튜브를 이용한 전도성 페이스트)

  • Oh, Young-Seok;Suh, Dae-Woo;Kim, Young-Jin;Choi, Jae-Boong;Baik, Seung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1908-1912
    • /
    • 2008
  • Conductive polymers, prepared by mixing electrically conductive fillers with a suitable polymeric formulation, are widely used in applications such as interconnecting materials for high density electronic packaging. However, resins of conductive pastes used as binders and vehicles are generally nonconductive, so that they may prevent the electrical contact between conductive fillers and reduce electron transmission. In this study, we improved conductivity of silver paste by the incorporation of cabon nanotubes. It is important to achieve homogeneous dispersion of CNTs to act as reinforcements efficiently in matrix. We carried out acid treatment on nanotubes for their homogeneous dispersion in silver/conducting polymer matrix. The dispersion states of nanotubes were characterized by raman spectra and filed emission scanning electron microscope. The electrical resistivity of CNTs incorporated silver paste was also measured by 4-point probe method.

  • PDF

Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

  • Ranot, Mahipal;Shinde, K.P.;Oh, Y.S.;Kang, S.H.;Jang, S.H.;Hwang, D.Y.;Chung, K.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.40-43
    • /
    • 2017
  • Carbon coating approach is used to prepare carbon-doped $MgB_2$ bulk samples using low-cost naphthalene ($C_{10}H_8$) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at $120^{\circ}C$ and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for $MgB_2$ doped with carbon. As compared to un-doped $MgB_2$, a systematic enhancement in $J_c(H)$ properties with increasing carbon doping level was observed for naphthalene-derived C-doped $MgB_2$ samples. The substantial enhancement in $J_c$ is most likely due to the incorporation of C into $MgB_2$ lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

Incorporation of Graphitic Porous Carbon for Synthesis of Composite Carbon Aerogel with Enhanced Electrochemical Performance

  • Singh, Ashish;Kohli, D.K.;Singh, Rashmi;Bhartiya, Sushmita;Singh, M.K.;Karnal, A.K.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.204-211
    • /
    • 2021
  • We report, synthesis of high surface area composite carbon aerogel using additive based polymerization technique by incorporating graphitic porous carbon as additive. This additive was separately prepared using sol-gel polymerization of resorcinol-furfuraldehyde in iso-propyl alcohol medium at much above the routine gelation temperature to yield porous carbon (CA-IPA) having graphitic layered morphology. CA-IPA exhibited a unique combination of meso-pore dominated surface area (~ 700 m2/g) and good conductivity of ~ 300 S/m. The composite carbon aerogel (CCA) was synthesized by traditional aqueous medium based resorcinol-formaldehyde gelation with CA-IPA as additive. The presence of CA-IPA favored enhanced meso-porosity as well as contributed to improvement in bulk conductivity. Based on the surface area characteristics, CCA-8 composition having 8% additive was found to be optimum. It showed specific surface area of ~ 2056 m2/g, mesopore area of 827 m2/g and electrical conductivity of 180 S/m. The electrode formed with CCA-8 showed improved electrochemical behavior, with specific capacitance of 148 F/g & ESR < 1 Ω, making it a better choice as super capacitor for energy storage applications.

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S.;Zhang, G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.212-219
    • /
    • 2018
  • Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.

Distribution of bacterial biomass in the water column of Soyang lake (소양호 수중 생태계에서의 세균 생체물질량의 분포)

  • 김명운;강찬수;김상종
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.130-138
    • /
    • 1989
  • Microbiological parameters such as bacterial biovolume and biomass in Soyang Reservoir was statistically analyzed with the physico-chemical enviromental factors. Analysis of correlation and multiple regression showed that temperature affects most of microbiological parameters. Variations of total bacterial number, total bacterial biovolume and saprophyte number were highly correlatd with the concentrations of chlorophyll a and pheophytin a. Bacterial production by the $^{3}H$-thymidine incorporation rate was largely affected by Seston. It suggests that microbiological factors such as bacterial biovolume and bacterial biomass were controled by the concentration of seston and distribution of phytoplankton which acts as carbon and energy source for the bacterial community in the water column of Soyang Reservoir.

  • PDF

The preparation of ultra hard nitrogenated DLC film by $N_2^+$ implantation

  • Olofinjana, A.O.;Chen, Z.;Bell, J.M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.165-166
    • /
    • 2002
  • Hydrogen free diamond like carbon (DLC) films were prepared on steel substrates by using a single ion beam in a configuration that allowed sputtering of a graphite target and at the same time allowed to impact the substrate at a grazing angle. The DLC films so prepared have improved properties with increased disorder and with modest hardness that is slightly higher than previously reported values. We have studied the effects of $N_2^+$ ions implantation on such films. It is found that the implantations of nitrogen ions into DLC films lead to chemical modifications that allowed N atoms to be incorporated into the carbon network to produce a nitrogenated DLC. Nano-indentation experiments indicated that the nitrogenated films have consistently higher hardnesses ranging from 30 to 45GPa, which represents a considerable increase in surface hardness, compared with non-nitrogenated precursor films. The investigations by XPS and Raman spectroscopy suggests that the $N_2^+$ implanted DLCs had undergone both chemical and structural modifications through the incorporation of N atoms and the increased ratio of $sp^3/sp^2$ type bonding. The observed high hardness was therefore attributable to these structural and chemical modifications. This result has implication for the preparation of super hard wear resistant films required for tribological functions in devices.

  • PDF