• Title/Summary/Keyword: carbon fiber sensors

Search Result 56, Processing Time 0.022 seconds

Carbon fiber-based long-gauge sensors monitoring the flexural performance of FRP-reinforced concrete beams

  • Mohamed A. Saifeldeen;Nariman Fouad
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.4
    • /
    • pp.299-314
    • /
    • 2023
  • Long-gauge carbon fiber line (CFL) sensors have received considerable attention in the past decade. However, there is still a need for an in-depth investigation of their measuring accuracy. This study investigates the accuracy of carbon fiber line sensors to monitor and differentiate the flexural behavior of two beams, one reinforced with steel bars alone and the other reinforced with steel and basalt fiber-reinforced polymer bars. A distributed set of long-gauge carbon fiber line, Fiber Bragg Grating (FBG), and traditional strain gauge sensors was mounted on the tensile concrete surface of the studied beams to compare the results and assess the accuracies of the proposed sensors. The test beams were loaded monotonically under four-point bending loading until failure. Results indicated the importance of using long-gauge sensors in providing useful, accurate, and reliable information regarding global structural behavior, while point sensors are affected by local damage and strain concentrations. Furthermore, long-gauge carbon fiber line sensors demonstrated good agreement with the corresponding Fiber Bragg Grating sensors with acceptable accuracy, thereby exhibiting potential for application in monitoring the health of large-scale structures.

Fabrication and Characterization of a Pressure Sensor using a Pitch-based Carbon Fiber (탄소섬유를 이용한 압력센터 제작 및 특성평가)

  • Park, Chang-Sin;Lee, Dong-Weon;Kang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.417-424
    • /
    • 2007
  • This paper reports fabrication and characterization of a pressure sensor using a pitch-based carbon fiber. Pitch-based carbon fibers have been shown to exhibit the piezoresistive effect, in which the electric resistance of the carbon fiber changes under mechanical deformation. The main structure of pressure sensors was built by performing backside etching on a SOI wafer and creating a suspended square membrane on the front side. An AC electric field which causes dielectrophoresis was used for the alignment and deposition of a carbon fiber across the microscale gap between two electrodes on the membrane. The fabricated pressure sensors were tested by applying static pressure to the membrane and measuring the resistance change of the carbon fiber. The resistance change of carbon fibers clearly shows linear response to the applied pressure and the calculated sensitivities of pressure sensors are $0.25{\sim}0.35 and 61.8 ${\Omega}/k{\Omega}{\cdot}bar$ for thicker and thinner membrane, respectively. All these observations demonstrated the possibilities of carbon fiber-based pressure sensors.

Measurement of a gauge factor of a carbon fiber and its application to sensors (탄소섬유의 게이지 계수 측정 및 센서 응용)

  • Kim, Ji-Kwan;Park, Chang-Sin;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.162-167
    • /
    • 2008
  • In this paper we report on the electrical properties of carbon fiber which is an attractive material for strain gauges and can also be applied to resonating micro sensors. The carbon fibers used in this research was manufactured from polyactylonitrile (PAN). The fabricated carbon fibers had about $10\;{\mu}m$ in length and several centimeters in length. We employed a micro structure to measure electrical properties of the carbon fiber. The measured electrical resistivity of the carbon fibers were about $3{\times}10^{-3}{\Omega}{\cdot}cm$ A gauge factor of the carbon fiber is also observed with the same system and it was about 400, depending on the structure of the carbon fiber. For the sensor applications of the carbon fiber, it is selectively placed between the gap of Al electrodes using a dielectrophoresis method. When the carbon fiber is resonated by a piezoelectric ceramic, resistance change at a variety of resonance mode was observed through an electrical system.

Modeling of an embedded carbon nanotube based composite strain sensor

  • Boehle, M.;Pianca, P.;Lafdi, K.;Chinesta, F.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.263-273
    • /
    • 2015
  • Carbon nanotube strain sensors, or so called "fuzzy fiber" sensors have not yet been studied sufficiently. These sensors are composed of a bundle of fiberglass fibers coated with CNT through a thermal chemical vapor deposition process. The characteristics of these fuzzy fiber sensors differ from a conventional nanocomposite in that the CNTs are anchored to a substrate fiber and the CNTs have a preferential orientation due to this bonding to the substrate fiber. A numerical model was constructed to predict the strain response of a composite with embedded fuzzy fiber sensors in order to compare result with the experimental results obtained in an earlier study. A comparison of the numerical and experimental responses was conducted based on this work. The longitudinal sensor output from the model matches nearly perfectly with the experimental results. The transverse and off-axis tests follow the correct trends; however the magnitude of the output does not match well with the experimental data. An explanation of the disparity is proposed based on microstructural interactions between individual nanotubes within the sensor.

Detection of Delamination Crack for Polymer Matrix Composites with Carbon Fiber by Electric Potential Method

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.149-153
    • /
    • 2013
  • Delamination crack detection is very important for improving the structural reliability of laminated composite structures. This requires real-time delamination detection technologies. For composite laminates that are reinforced with carbon fiber, an electrical potential method uses carbon fiber for reinforcements and sensors at the same time. The use of carbon fiber for sensors does not need to consider the strength reduction of smart structures induced by imbedding sensors into the structures. With carbon fiber reinforced (CF/) epoxy matrix composites, it had been proved that the delamination crack was detected experimentally. In the present study, therefore, similar experiments were conducted to prove the applicability of the method for delamination crack detection of CF/polyetherethereketone matrix composite laminates. Mode I and mode II delamination tests with artificial cracks were conducted, and three point bending tests without artificial cracks were conducted. This study experimentally proves the applicability of the method for detection of delamination cracks. CF/polyetherethereketone material has strong electric resistance anisotropy. For CF/polyetherethereketone matrix composites, a carbon fiber network is constructed, and the network is broken by propagation of delamination cracks. This causes a change in the electric resistance of CF/polyetherethereketone matrix composites. Using three point bending specimens, delamination cracks generated without artificial initial cracks is proved to be detectable using the electric potential method: This method successfully detected delamination cracks.

Study on the Monitoring Method of Concrete Structure Repaired by Carbon Sheets with Optical Fiber Sensors (콘크리트구조물의 탄소섬유시트에 의한 구조 보강시 광섬유 센서를 이용한 모니터링기법에 관한 연구)

  • Kim, Ki-Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.149-152
    • /
    • 2005
  • In order to extend the life time of building and civil infra-structure, nowadays, patch type carbon sheets are widely used as repairing meterials. Repaired concrete columns and beams with carbon sheets gain their stiffness and strength, but they lose toughness and show brittle failure behaviors. Usually, the cracks of concrete structures are visible with naked eyes and the status of the structure in the life cycle is estimated with visible inspection. After repairing of the structure, crack visibility is blocked by repaired carbon sheets. Therefore, structural monitoring after repairing is indispensible and self diagnosis method with optical fiber sensor is very useful. In this paper, peel-out effects is detected with optical fiber sensors and the strain difference between main structure and repaired carbon sheets when they separate each other.

  • PDF

Health monitoring of carbon fiber-reinforced polymer composites in γ-radiation environment using embedded fiber Bragg grating sensors

  • Jing Zhong;Feida Chen;Yuehao Rui;Yong Li;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3039-3045
    • /
    • 2023
  • Fiber-reinforced polymer (FRP) composites are considered suitable candidates for structural materials of spacecrafts due to their excellent properties of high strength, light weight, and corrosion resistance. An online health monitoring method for FRP composites must be applied to space structures. However, the application of existing health monitoring methods to space structures is limited due to the harsh space environment. Here, carbon fiber-reinforced polymer (CFRP) composites embedded with fiber Bragg grating (FBG) sensors were prepared to explore the feasibility of strain monitoring using embedded FBG sensors in γ-radiation environment. The analysis of the influence of radiation on the strain monitoring demonstrated that the embedded FBG can be successfully applied to the health monitoring of FRP composites in radiation environment.

Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method (압전기법을 이용한 복합재료 손상모니터링의 가능성에 관한 연구)

  • Hwang, Hui-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.918-923
    • /
    • 2008
  • Since crack detection for laminated composites in-service is effective to improve the structural reliability of laminated composites, it have been tried to detect cracks of laminated composites by various nondestructive methods. An electric potential method is one of the widely used approaches for detection of cracks for carbon fiber composites, since the electric potential method adopts the electric conductive carbon fibers as reinforcements and sensors and the adoption of carbon fibers as sensors does not bring strength reduction induced by embedding sensors into the structures such as optical fibers. However, the application of the electric method is limited only to electrically conductive composite materials. Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints because it can monitor continuously the damage of adhesively bonded structures without producing any defects. Polymeric materials for the matrix of composite materials have piezoelectric characteristics similarly to adhesive materials, and the fracture of composite materials should lead to the fracture of polymeric matrix. Therefore, it seems to be valid that the piezoelectric method can be applied to monitoring the damage of composite materials. In this research, therefore, the feasibility study of the damage monitoring for composite materials by piezoelectric method was conducted. Using carbon fiber epoxy composite and glass fiber composite, charge output signals were measured and analyzed during the static and fatigue tests, and the effect of fiber materials on the damage monitoring of composite materials by the piezoelectric method was investigated.

Cost-effective structural health monitoring of FRPC parts for automotive applications

  • Mitschang, P.;Molnar, P.;Ogale, A.;Ishii, M.
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.135-149
    • /
    • 2007
  • In the automobile industry, structural health monitoring of fiber reinforced polymer composite parts is a widespread need for maintenance before breakdown of the functional elements or a complete vehicle. High performance sensors are generally used in many of the structural health monitoring operations. Within this study, a carbon fiber sewing thread has been used as a low cost laminate failure sensing element. The experimentation plan was set up according to the electrical conductance and flexibility of carbon fiber threads, advantages of preforming operations, and sewing mechanisms. The influence of the single thread damages by changing the electrical resistance and monitoring the impact location by using carbon thread sensors has been performed. Innovative utilization of relatively cost-effective carbon threads for monitoring the delamination of metallic inserts from the basic composite laminate structure is a highlighting feature of this study.

Self Diagnosing Property of Carbon and Glass Hybrid Fiber Materials for Concrete Strengthening (자기진단 재료로서의 콘크리트 보강용 탄소유리복합섬유로드의 적용성 검토)

  • Park, Seok-Kyun;Lee, Byung-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.428-431
    • /
    • 2004
  • Smart structural system is defined as structural system with a certain-level of autonomy relying on the embedded functions of sensors, actuators and processors, that can automatically adjust structural characteristics, in response to the change in external disturbance and environments, toward structural safety and serviceability as well as the extension of structural service life. In this study, carbon and glass hybrid fiber materials were investigated fundamentally for the applicability of self diagnosis in smart concrete structural system as embedded functions of sensors.

  • PDF