Cost-effective structural health monitoring of FRPC parts for automotive applications

  • Mitschang, P. (Institut fur Verbundwerkstoffe GmbH) ;
  • Molnar, P. (Institut fur Verbundwerkstoffe GmbH) ;
  • Ogale, A. (Institut fur Verbundwerkstoffe GmbH) ;
  • Ishii, M. (Honda Research and Development Europe (Deutschland) GmbH)
  • Published : 2007.06.01

Abstract

In the automobile industry, structural health monitoring of fiber reinforced polymer composite parts is a widespread need for maintenance before breakdown of the functional elements or a complete vehicle. High performance sensors are generally used in many of the structural health monitoring operations. Within this study, a carbon fiber sewing thread has been used as a low cost laminate failure sensing element. The experimentation plan was set up according to the electrical conductance and flexibility of carbon fiber threads, advantages of preforming operations, and sewing mechanisms. The influence of the single thread damages by changing the electrical resistance and monitoring the impact location by using carbon thread sensors has been performed. Innovative utilization of relatively cost-effective carbon threads for monitoring the delamination of metallic inserts from the basic composite laminate structure is a highlighting feature of this study.

Keywords

References

  1. S. S. Kessler and S. M. Sperling, Structural health monitoring of composite materials using piezoelectric sensors, internet web page: http://web.mit.edu/sskess/www/papers/materials_evaluation.pdf (accessed on August 14. 2004)
  2. R. D. Adams, P. Cawley, C. J. Pye and B. J. Stone, A vibration technique for non-destructively assessing the integrity of structures, J. Mech. Engng Sci. 20, 93-100 (1978) https://doi.org/10.1243/JMES_JOUR_1978_020_016_02
  3. P. Cawley and R. D. Adams. The location of defects in structures from measurements of natural frequencies, J. Strain Anal. 14, 49-57 (1979) https://doi.org/10.1243/03093247V142049
  4. H. M. Adelman and R. T. Haftka, Sensitivity analysis of discrete structural systems, AIAA Journal 24, 823-832 (1986) https://doi.org/10.2514/3.48671
  5. D. C. Zimmerman and M. Kaouk, Structural damage detection using a minimum rank update theory, ASME J. Vibrat. Acoust. 116, 222-231 (1994) https://doi.org/10.1115/1.2930416
  6. A. Pandey, K. M. Biswas and M. Samman, Damage detection from changes in curvature mode shapes, J. Sound Vibrat. 145, 321-332 (1991) https://doi.org/10.1016/0022-460X(91)90595-B
  7. M. M. Samman, Structural damage detection using the modal correlation coefficient (MCC), in: Proc. 15th Internat. Modal Anal. Conf., Orlando, FL, pp. 627-630 (1997)
  8. Z. Liang, G. C. Lee and F. Kong, On detection of damage location of bridges, in: Proc. 15th Internat. Modal Anal. Conf., Orlando, FL, pp. 308-312 (1997)
  9. A. E. Aktan, D. L. Brown, C. R. Farrar, A. Helmicki, V. Hunt and J. Yao, Objective global condition assessment, in: Proc. 15th Internat. Modal Anal. Conf., Orlando, FL, pp. 364-373 (1997)
  10. E. F. Crawley and J. de Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA Journal 25, 1373-1385 (1987) https://doi.org/10.2514/3.9792
  11. T. Stoven, X.Wang, M. Neitzel and P. Mitschang, Monitoring the resin transfer molding process by piezoelectric elements, in: Processing Online Sensing and Control for Liquid Molding of Composite Structures, K. V. Steiner and S. G. Advani (Eds), Annapolis, MD/Apr. 14-15, CCM
  12. L. Yan, M. Fraser, A. Elgamal, J. P. Conte and T. Fountain, Applications of neural network in structural health monitoring, internet web page: http://healthmonitoring.ucsd.edu/ documentation/public/CJUHMCS2004-NNApplications.pdf (accessed on 10.08.2004)
  13. J. P. Lynch, A. Sundararajan, K. H. Law, H. Sohn and C. R. Farrar, New opportunities for structural monitoring: wireless active sensing, in: Proc. Internat. Workshop Adv. Sensors, Struct. Health Mon. Mart Struct., Keio University, Tokyo, Japan (2003)
  14. C. C. Fu, Wireless structural monitoring of a newly replaced fiber reinforced plastics (FRP) bridge deck, internet web page http://best.umd.edu/projects/frp.html (accessed on 12.08.2004)
  15. C. Weimer, Kohlenstofffasernahgarn fur Faser-Kunststoff-Verbund-Bauteile German patent DE19932842 A1 (1999)
  16. N. Tajima, T. Sakurai, M. Sasajima, N. Takeda and T. Kishi, Overview of Japanese smart materials demonstrator program and structures system project, Adv. Compos. Mater. 13, 3-15 (2004) https://doi.org/10.1163/1568551041408796
  17. N. Takeda, Electromechanical modeling of damage growth prediction of unidirectional CFRP composite patch. Internet web page: http://zeisei5.dpri.kyoto-u.ac.jp/us_j/3_2/takeda_hp.pdf (August 10, 2004)
  18. P. Molnar, A. Ogale and P. Mitschang, Incorporation of functional elements into the fibre reinforced polymer structure by means of tailoring technology. Reinforced Plastics 2004, International Balaton Conference, Hungary, May 25-27 (2004)