• Title/Summary/Keyword: carbon fiber reinforced composite

Search Result 681, Processing Time 0.033 seconds

The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites Applied to Railway Vehicles (철도차량용 폐 복합소재로부터 탄소섬유 회수)

  • Lee, Suk-Ho;Kim, Jung-Seok;Lee, Cheul-Kyu;Kim, Yong-Ki;Ju, Chang-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1059-1066
    • /
    • 2009
  • Recently, the amount of thermosetting plastic wastes has increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy resins, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that decompose epoxy resin and recover carbon fibers from carbon fiber reinforced epoxy composites applied to railway vehicles was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

Microstructure and Wear Properties of Squeeze Cast Carbon Fiber/Copper Alloy Metal Matrix Composite (탄소섬유 강화 Cu 기지 금속 복합재료의 Squeeze Cast 조직 및 내마멸특성)

  • Kim, Nam-Soo;Chi, Dong-Chul;Cho, Kyung-Mok;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.238-247
    • /
    • 1992
  • A carbon fiber(CF) reinforced Cu-10%Sn alloy matrix composite was successfully fabricated by squeeze casting method employing preheated graphite mold and proper process controlling factors. The matrix solidification microstructure of the Cu-10%Sn/CF composite reveals ${\alpha}-dendrite$ and ${\alpha}+{\delta}$ eutectoid. To compare the squeeze cast Cu-10%Sn/CF compostie with PM route fabricated Cu-graphite composites for electric contact material, mechanical wear and electrical arc wear tests were performed. Mechanical wear rate of the Cu-10%Sn/CF is much lower than that of the Cu-graphite composite. Weight loss with a variation of contact number in electrical arc wear tests shows a similar trend between the squeeze cast Cu-10%Sn/CF and PM Cu-graphite composites.

  • PDF

The effects of stacking sequence on the penetration-resistant behaviors of T800 carbon fiber composite plates under low-velocity impact loading

  • Ahmad, Furqan;Hong, Jung-Wuk;Choi, Heung Soap;Park, Soo-Jin;Park, Myung Kyun
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • Impact damages induced by a low-velocity impact load on carbon fiber reinforced polymer (CFRP) composite plates fabricated with various stacking sequences were studied experimentally. The impact responses of the CFRP composite plates were significantly affected by the laminate stacking sequences. Three types of specimens, specifically quasi-isotropic, unidirectional, and cross-ply, were tested by a constant impact carrying the same impact energy level. An impact load of 3.44 kg, corresponding to 23.62 J, was applied to the center of each plate supported at the boundaries. The unidirectional composite plate showed the worst impact resistance and broke completely into two parts; this was followed by the quasi-isotropic lay-up plate that was perforated by the impact. The cross-ply composite plate exhibited the best resistance to the low-velocity impact load; in this case, the impactor bounced back. Impact parameters such as the peak impact force and absorbed energy were evaluated and compared for the impact resistant characterization of the composites made by different stacking sequences.

Mechanical characteristics of laminated composites using hybrid prepreg (하이브리드 프리프레그를 사용한 적층복합재료의 기계적 특성)

  • 정성교;정성균;임승규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.189.1-192
    • /
    • 1999
  • Mechanical characteristics of composite laminates with carbon tissue and glass scrim are evaluated in this paper. Composite laminates in USN125 group are made by inserting carbon tissue and glass scrim between layers. Consequently it was shown that mechanical characteristics of carbon fiber reinforced composite materials were improved by inserting carbon tissue.

  • PDF

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

Mechanical Properties of Carbon Fiber Nano Composites for Nano-fiber Additives and Fabric Orientation (나노섬유 분산과 섬유 배향성에 따른 탄소섬유 나노 복합재료의 기계적 특성)

  • Song, Jun Hee;Choi, Jun Yong;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • The mechanical properties of nano composites were evaluated for structural performance in order to enhance their applicability to the car and machine industrial fields. Carbon fiber reinforced plastics (CFRP) and GFRP were manufactured by vacuum-assisted resin transfer molding (VARTM) process with good mechanical properties. Tensile test was conducted to obtain the process factor of each composite. Also, carbon nano fiber (CNF) was dispersed in the composites and the relationship between the mechanical property and the CNF fraction was compared. The tensile strength and stiffness of 0/90 laminated CFRP were the best. CFRP/CNF (0.5 wt.%) was confirmed to be an excellent material for its elasticity and tensile strength.

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan;Tanoglu, Metin;Aktas, Engin
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.113-123
    • /
    • 2019
  • In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.

Development of CPGFRP Sensor for Fine Crack Detection of Structures (구조물 미세크랙 예측용 CPGFRP센서 개발)

  • Shin Soon-Gi;Jang Chang-Woo;Park Yun-Han;Kim Seoung-Eun;Kim Hwang-Soo;Lee Jun-Hee
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.119-122
    • /
    • 2004
  • A CPGFRP(Carbon Powder Glass Fiber Reinforced Plastics) sensor was fabricated for fine crack detection of structures. The electrical resistance of the sensor was measured on condition of various composition of carbon powders and thickness of bundle of glass fibers. The resistance was decreased as the increase of the content of carbon powders and the TEX of the glass fibers. In the case of loading on CPGFRP sensor, because inner crack was propagated, the part of percolation structures was disconnected. The sensor is superior to carbon fiber for the detecting ability of fine crack.

  • PDF

Study on the Durability of Composite Tilting Pad Journal Bearing for Turbo Compressor System under Oil-cut Situation (터보 컴프레셔용 복합재료 틸팅 패드 저널 베어링의 오일 공급 중단 상황에서의 내구성 연구)

  • Choe, Kang-Yeong;Jung, Min-Hye;You, Jun-Il;Song, Seung-A;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.111-116
    • /
    • 2016
  • The tilting pad journal bearing for the turbo compressor application has a role to support high speed and heavy loading rotor. White metal has been widely used for the bearing material but the conventional bearing is immediately suspended and induces serious serious damage to the rotor under the unexpected oil cut situation or the insufficient oil film formation. The carbon fiber reinforced composite having high specific stiffness, specific strength and excellent tribological characteristics can solve these seizure problems. In this work, the study on the durability of high thermal resistance carbon fiber/epoxy composite tilting pad journal bearing under oil cut situation was conducted. The material properties of the composite materials including tensile, compressive and interlaminar properties were measured at room and high temperature of oil cut situation. To investigate the possibility of failure of composite tilting pad journal bearing under oil cut situation, the stress distribution of the composite bearing was analyzed via finite element analysis and the Tsai-Wu Failure index was calculated. To verify the failure analysis results, the oil cut tests for the composite tilting pad journal bearing were conducted using industrial test bench.

Flexural Behavior of R.C Beams Retrofitted with Hybrid FRP(Fiber Reinforced Polymer) (Hybrid FRP(Fiber Reinforced Polymer)로 보강된 철근 콘크리트 보의 휨거동에 관한 연구)

  • 박은정;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.515-520
    • /
    • 2001
  • This study discusses the flexural performance of rehabilitated composite sections, consisting originally of R/C beams and subsequently strengthened by, Hybrid Fiber Reinforced Polymers(FRPs) and adhesives. Experimentations were peformed with 8 specimens to compare the rehabilitated effect of the length of FRPs, 2plies of FRPs, and 3plies of FRPs. The results show that the increase of the FRP strengthening length is effective on the flexural capacity and strength. Also, R.C beams retrofitted with hybrid FRPs are more effective on the increase of flexural capacity, strength, stiffness, and ductility than with a single kind of FRPs.

  • PDF