• Title/Summary/Keyword: carbon corrosion

Search Result 643, Processing Time 0.028 seconds

Effect of Sealing on the Corrosion Resistance of Plasma-Sprayed Alumina Coatings (실링이 플라즈마 스프레이 코팅된 알루미나 코팅재의 내부식성에 미치는 영향)

  • Kwon, Eui Pyo;Kim, Se Woong;Lee, Jong Kweon
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.442-447
    • /
    • 2022
  • Sealing treatment is a post-surface treatment of the plasma spray coating process to improve the corrosion resistance of the coating material. In this study, the effect of the sealing on the corrosion resistance and adhesive strength of the plasma spray-coated alumina coatings was analyzed. For sealing, an epoxy resin was applied to the surface of the coated specimen using a brush. The coated specimen was subjected to a salt spray test for up to 48 hours and microstructural analysis revealed that corrosion in the coating layer/base material interface was suppressed due to the resin sealing. Measurement of the adhesive strength of the specimens subjected to the salt spray test indicated that the adhesive strength of the sealed specimens remained higher than that of the unsealed specimens. In conclusion, the resin sealing treatment for the plasma spray-coated alumina coatings is an effective method for suppressing corrosion in the coating layer/base material interface and maintaining high adhesive strength.

Experimental Study on CO2 Diffusivity in Cementitious Materials

  • Jung, Sang-Hwa;Lee, Myung-Kue;Kim, Jee-Sang
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • The carbonation of concrete is one of the major factors that cause durability problems in concrete structures. The rate of carbonation depends largely upon the diffusivity of carbon dioxide in concrete. The purpose of this study is to identify the diffusion coefficients of carbon dioxide for various concrete mixtures. To this end, several series of tests have been planned and conducted. The test results indicate that the diffusion coefficient increases with the increase of water-cement ratio. The diffusion coefficient decreases with the increase of relative humidity at the same water-cement ratio. The diffusion of carbon dioxide reached the steady state within about five hours after exposure. The content of aggregates also influences the diffusivity of carbon dioxide in concrete. It was found that the diffusion coefficient of cement paste is larger then that of concrete or mortar. The quantitative values of diffusivity of carbon dioxide in this study will allow more realistic assessment of carbonation depth in concrete structures.

Seismic performance of low-rise reinforced concrete moment frames under carbonation corrosion

  • Vaezi, Hossein;Karimi, Amir;Shayanfar, Mohsenali;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.215-224
    • /
    • 2021
  • The carbon dioxide present in the atmosphere is one of the main reasons for the corrosion of bridges, buildings, tunnels, and other reinforced concrete (RC) structures in most industrialized countries. With the growing use of fossil fuels in the world since the Industrial Revolution, the amount of carbon dioxide in urban and industrial areas of the world has grown significantly, which increases the chance of corrosion caused by carbonation. The process of corrosion leads to a change in mechanical properties of rebars and concrete, and consequently, detrimentally impacting load-bearing capacity and seismic behavior of RC structures. Neglecting this phenomenon can trigger misleading results in the form of underestimating the seismic performance metrics. Therefore, studying the carbonation corrosion influence on the seismic behavior of RC structures in urban and industrial areas is of great significance. In this study, a 2D modern RC moment frame is developed to study and assess the effect of carbonation corrosion, in 5-year intervals, for a 50 years lifetime under two different environmental conditions. This is achieved using the nonlinear static and incremental dynamic analysis (IDA) to evaluate the reinforcement corrosion effects. The reduction in the seismic capacity and performance of the reinforced concrete frame, as well as the collapse probability over the lifetime for different corrosion scenarios, is examined through the capacity curves obtained from nonlinear static analysis and the fragility curves obtained from IDA.

Synergistic Inhibition of Carbon Steel Corrosion by Inhibitor-Blends in Chloride - Containing Simulated Cooling Water

  • Shaban, Abdul;Felhosi, Ilona;Vastag, Gyongyi
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.91-99
    • /
    • 2017
  • The objective of this work was to develop efficient synergistic inhibitor combinations comprising sodium nitrite ($NaNO_2$) and an inhibitor-blend code named (SN-50), keeping in view of their application in industrial cooling water systems. The electrochemical characteristics of the carbon steel working electrode in simulated cooling water (SCW), without and with the addition of different combinations of the inhibitors, were investigated using electrochemical impedance spectroscopy (EIS), open circuit potential (OCP). The electrode surface changes were followed by visual characterization methods. It was demonstrated in this study that all the combinations of the inhibitors exhibited synergistic benefit and higher inhibition efficiencies than did either of the individual inhibitors. The addition of SN-50 inhibitor to the SCW shifted the OCP to more anodic values and increased the polarization resistance ($R_p$) values of carbon steel at all applied concentrations. The higher the applied sodium nitrite concentration (in the protection concentration range), the higher the obtained $R_p$ values and the inhibition efficiency improved by increasing the inhibitor concentration.

Corrosion and Surface Resistance of Ni-C Composite by Electrodeposition (전해도금에 의한 Ni-C 복합층의 내식성 및 표면 전기저항)

  • Park, Je-Sik;Lee, Sung-Hyung;Jeong, Goo-Jin;Lee, Churl-Kyoung
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.288-294
    • /
    • 2011
  • Simultaneous Ni and C codeposition by electrolysis was investigated with the aim of obtaining better corrosion resistivity and surface conductivity of a metallic bipolar plate for application in fuel cells and redox flow batteries. The carbon content in the Ni-C composite plate fell in a range of 9.2~26.2 at.% as the amount of carbon in the Ni Watt bath and the roughness of the composite were increased. The Ni-C composite with more than 21.6 at.% C content did not show uniformly dispersed carbon. It also displayed micro-sized defects such as cracks and crevices, which result in pitting or crevice corrosion. The corrosion resistance of the Ni-C composite in sulfuric acid is similar with that of pure Ni. Electrochemical test results such as passivation were not satisfactory; however, the Ni-C composite still displayed less than $10^{-4}$ $A/cm^2$ passivation current density. Passivation by an anodizing technique could yield better corrosion resistance in the Ni-C composite, approaching that of pure Ni plating. Surface resistivity of pure Ni after passivation was increased by about 8% compared to pure Ni. On the other hand, the surface resistivity of the Ni-C composite with 13 at.% C content was increased by only 1%. It can be confirmed that the metal plate electrodeposited Ni-C composite can be applied as a bipolar plate for fuel cells and redox flow batteries.

Corrosion and Nanomechanical Behaviors of 16.3Cr-0.22N-0.43C-1.73Mo Martensitic Stainless Steel

  • Ghosh, Rahul;Krishna, S. Chenna;Venugopal, A.;Narayanan, P. Ramesh;Jha, Abhay K.;Ramkumar, P.;Venkitakrishnan, P.V.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.281-289
    • /
    • 2016
  • The effect of nitrogen on the electrochemical corrosion and nanomechanical behaviors of martensitic stainless steel was examined using potentiodynamic polarization and nanoindentation test methods. The results indicate that partial replacement of carbon with nitrogen effectively improved the passivation and pitting corrosion resistance of conventional high-carbon and high- chromium martensitic steels. Post-test observation of the samples after a potentiodynamic test revealed a severe pitting attacks in conventional martensitic steel compared with nitrogen- containing martensitic stainless steel. This was shown to be due to (i) microstructural refinement results in retaining a high-chromium content in the matrix, and (ii) the presence of reversed austenite formed during the tempering process. Since nitrogen addition also resulted in the formation of a $Cr_2N$ phase as a process of secondary hardening, the hardness of the nitrogen- containing steel is slightly higher than the conventional martensitic stainless steel under tempered conditions, even though the carbon content is lowered. The added nitrogen also improved the wear resistance of the steel as the critical load (Lc2) is less, along with a lower scratch friction coefficient (SFC) when compared to conventional martensitic stainless steel such as AISI 440C.

Inhibition of Rebar Corrosion by Carbonate and Molybdate Anions

  • Tan, Y.T.;Wijesinghe, S.L.;Blackwood, D.J.
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • Bicarbonate/carbonate and molybdate anions have been characterized for their inhibitive effect on pitting corrosion of carbon steel in simulated concrete pore solution by using electrochemical tests such as electrochemical impedance (EIS) and linear polarization (LP). It was revealed that bicarbonate/carbonate has a weak inhibitive effect on pitting corrosion that is approximately one order of magnitude lower compared to hydroxide. Molybdate is effective against pitting corrosion induced by the concentration of chloride as low as 113 mM and can increase the pitting potential of a previously pitted sample to the oxygen evolution potential by the concentration of molybdate as much as 14.6 mM only. The formation of a $CaMoO_4$ film on the surface hinders the reduction of dissolved oxygen on the steel surface, reducing corrosion potential and increasing the safety margin between corrosion potential and pitting potential further. In addition, pore-plugging by $FeMoO_4$ as a type of salt film within pits increases the likelihood of repassivation.

The Influence of pH on Corrosion Behavior of Copper Tubes in Tap Water (수돗물의 pH가 동관의 부식에 미치는 영향)

  • Min, Sung-Ki;Na, Seung-Chan;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.232-237
    • /
    • 2009
  • Copper tubes are widely used in the distribution systems of drinking water throughout the world because of their excellent corrosion resistance, high thermal conductivity, and ease of fabrication. However, corrosion problems from copper tubes as blue water phenomenon and leakage have been reported appreciably. The effect of pH on the corrosion behavior of copper tube for tap water was investigated by electrochemical voltammetric techniques in synthetic tap water. And the copper corrosion cases were discussed from the viewpoint of factors affecting the corrosion rate such as pH, alkalinity, LSI(Langelier Saturation Index), and concentration of bicarbonate and dissolved carbon dioxide.

Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe (ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구)

  • Kim, Jae-Seong;Kim, Yong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

Evaluation of Life Time for Anti-Corrosive Methods for Marine Steel Sheet by Cyclic Corrosion Test (실내 가속부식시험을 통한 해양 강관합성 말뚝의 방식 기법 수명 평가)

  • Park, J.W.;Lee, J.G.;Lee, K.W.;Kim, J.H.;Jung, M.K.;Lee, J.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.243-250
    • /
    • 2009
  • When a steel sheet pipe applied to marine environment, an anti-corrosive coating should be treated to obtain long-term life-time for steels, especially, splash zone. Although anti-corrosive property of coatings is required to be tested in real marine environment, it is difficult because of long test time such as 20 years or more time. Therefore, we used cyclic corrosion tester in a laboratory, which has similar conditions with salt-dry-wet process such as real marine environment. Anti-corrosive properties of the coatings and two steels were tested their anti-corrosive properties under cyclic corrosion test conditions(KS D ISO 14993) and the results were compared with estimate life-time in real marine environment. According to cyclic corrosion test, accelerated corrosive factor of each anti-corrosive coating was investigated accelerated corrosive factor from impedance with EIS method. Accelerated corrosive factor of type SS400 carbon steel and A690 was also investigated their accelerated corrosive factor from the regression curves of weigh loss results. One of the anti-corrosive coatings showed about 50 years life-time compared with standard sample life-time. Carbon steel SS400 showed from 0.1 mm/yr to 0.06 mm/yr as its corrosion rate.