DOI QR코드

DOI QR Code

Corrosion and Surface Resistance of Ni-C Composite by Electrodeposition

전해도금에 의한 Ni-C 복합층의 내식성 및 표면 전기저항

  • Park, Je-Sik (School of Advanced Materials and System Eng., Kumoh National Institute of Technology) ;
  • Lee, Sung-Hyung (Jio Deco) ;
  • Jeong, Goo-Jin (Green Energy System Center, Kumoh National Institute of Technology) ;
  • Lee, Churl-Kyoung (School of Advanced Materials and System Eng., Kumoh National Institute of Technology)
  • 박제식 (금오공과대학교 신소재시스템공학부) ;
  • 이성형 (지오데코) ;
  • 정구진 (금오공과대학교 그린에너지시스템센터) ;
  • 이철경 (금오공과대학교 신소재시스템공학부)
  • Received : 2011.03.16
  • Accepted : 2011.04.19
  • Published : 2011.05.27

Abstract

Simultaneous Ni and C codeposition by electrolysis was investigated with the aim of obtaining better corrosion resistivity and surface conductivity of a metallic bipolar plate for application in fuel cells and redox flow batteries. The carbon content in the Ni-C composite plate fell in a range of 9.2~26.2 at.% as the amount of carbon in the Ni Watt bath and the roughness of the composite were increased. The Ni-C composite with more than 21.6 at.% C content did not show uniformly dispersed carbon. It also displayed micro-sized defects such as cracks and crevices, which result in pitting or crevice corrosion. The corrosion resistance of the Ni-C composite in sulfuric acid is similar with that of pure Ni. Electrochemical test results such as passivation were not satisfactory; however, the Ni-C composite still displayed less than $10^{-4}$ $A/cm^2$ passivation current density. Passivation by an anodizing technique could yield better corrosion resistance in the Ni-C composite, approaching that of pure Ni plating. Surface resistivity of pure Ni after passivation was increased by about 8% compared to pure Ni. On the other hand, the surface resistivity of the Ni-C composite with 13 at.% C content was increased by only 1%. It can be confirmed that the metal plate electrodeposited Ni-C composite can be applied as a bipolar plate for fuel cells and redox flow batteries.

Keywords

References

  1. M. Winter and R. J. Brodd, Chem. Rev,. 104, 4245 (2004). https://doi.org/10.1021/cr020730k
  2. C. Ponce de Leon, A. Frias-Ferrer, J. Gonzalez-Garcia, D. A. Szanto and F. C. Walsh, J. Power Sourc., 160, 716 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.095
  3. C. R. Lee and C. N. Yang, Mechanic and Materials, KIMS On the Web (in Korean), Retrieved May 9, 2009 from http://www.kims.re.kr/mip/data/bookPDF/80/2102-02.pdf.
  4. H. Tawfik, Y. Hung and D. Mahajan, J. Power Sourc., 163, 755 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.088
  5. Kh. M. S. Youssef, C. C. Koch and P. S. Fedkiw, Corrosion Sci., 46, 51 (2004). https://doi.org/10.1016/S0010-938X(03)00142-2
  6. M. -D. Ger, Mater. Chem. Phys., 87, 67 (2004). https://doi.org/10.1016/j.matchemphys.2004.04.022
  7. S. K. Song, I. D. Hwang, N. J. Kim and D. Y. Lee, J. Kor. Inst. Met. & Mater., 35, 1211 (1997).
  8. D. A. Jones, Principles and Prevention of Corrosion, p.115, Prentice Hall, New Jersey, USA (1992).
  9. P. Martis, V. S. Dilimon, J. Delhalle and Z. Mekhalif, Electrochim. Acta, 55, 5407 (2010). https://doi.org/10.1016/j.electacta.2010.04.065
  10. Z. Yang, H. Xu, Y. -L. Shi, M. -K. Li, Y. Huang and H. -L. Li, Mater. Res. Bull., 40, 1001 (2005). https://doi.org/10.1016/j.materresbull.2005.02.015
  11. B. -G. An, L. -X. Li and H. -X. Li, Mater. Chem. Phys., 110, 481 (2008). https://doi.org/10.1016/j.matchemphys.2008.03.007
  12. L. Chen, L. Wang, Z. Zeng and J. Zhang, Mater. Sci. Eng., 434, 319 (2006). https://doi.org/10.1016/j.msea.2006.06.098
  13. Y. S. Huang, X. T. Zeng, I. Annergren and F. M. Liu, Surf. Coating. Tech., 167, 207 (2003). https://doi.org/10.1016/S0257-8972(02)00899-X
  14. E. Chassaing, M. Joussellin and R. Wiart, J. Electroanal. Chem., 157, 75 (1983).
  15. R. C. Weast, M. J. Astle and W. H. Beyer, CRC Handbook of Chemistry and Physics, p.E-104, CRC Press, Boca Raton, USA (1987).
  16. S. A. Lajevardi and T. Shahrabi, Appl. Surf. Sci., 256, 6775 (2010). https://doi.org/10.1016/j.apsusc.2010.04.088
  17. R. P. Socha, P. Nowak, K. Laajalehto and J. Vayrynen, Colloid. Surface. Physicochem. Eng. Aspect., 235, 45 (2004). https://doi.org/10.1016/j.colsurfa.2004.01.011
  18. G. Vidrich, J. -F. Castagnet and H. Ferkel, J. Electrochem. Soc., 152, C294 (2005). https://doi.org/10.1149/1.1885286
  19. S. Spanou, E. A. Pavlatou and N. Spyrellis, Electrochim. Acta, 54, 2547 (2009). https://doi.org/10.1016/j.electacta.2008.06.068
  20. C. Guo, Y. Zuo, X. Zhao, J. Zhao and J. Xiong, Surf. Coating. Tech., 202, 3385 (2008). https://doi.org/10.1016/j.surfcoat.2007.12.005
  21. X. H. Chen, C. S. Chen, H. N. Xiao, H. B. Liu, L. P. Zhou, S. L. Li and G. Zhang, Tribol. Int., 39, 22 (2006). https://doi.org/10.1016/j.triboint.2004.11.008
  22. Sh. Alirezaei, S. M. Monirvaghefi, M. Salehi and A. Saatchi, Surf. Coating. Tech., 184, 170 (2004). https://doi.org/10.1016/j.surfcoat.2003.11.013
  23. K. Esumi, M. Ishigami, A. Nakajima, K. Sawada and H. Honda, Carbon, 34, 279 (1996). https://doi.org/10.1016/0008-6223(96)83349-5
  24. S. M. Sharland, Corrosion Sci., 27, 289 (1987). https://doi.org/10.1016/0010-938X(87)90024-2
  25. M. Gattrell, J. Qian, C. Stewart, P. Graham and B. MacDougall, Electrochim. Acta, 51, 395 (2005). https://doi.org/10.1016/j.electacta.2005.05.001