• Title/Summary/Keyword: carbon capture and storage(CCS)

Search Result 114, Processing Time 0.031 seconds

Optimal Site Selection of Carbon Storage Facility using Satellite Images and GIS (위성영상과 GIS를 활용한 CO2 지중저장 후보지 선정)

  • Hong, Mi-Seon;Sohn, Hong-Gyoo;Jung, Jae-Hoon;Cho, Hyung-Sig;Han, Soo-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • In the face of growing concern about global warming, increasing attention has been focused on the reduction of carbon dioxide emissions. One method to mitigating the release of carbon dioxide is Carbon Capture and Storage (CCS). CCS includes separation of carbon dioxide from industrial emission in plants, transport to a storage site, and long-term isolation in underground. It is necessary to conduct analyses on optimal site selection, surface monitoring, and additional effects by the construction of CCS facility in Gyeongsang basin, Korea. For the optimal site selection, necessary data; geological map, landcover map, digital elevation model, and slope map, were prepared, and a weighted overlay analysis was performed. Then, surface monitoring was performed using high resolution satellite image. As a result, the candidate region was selected inside Gyeongnam for carbon storage. Finally, the related regulations about CCS facility were collected and analyzed for legal question of selected site.

Analysis of Modality and Procedures for CCS as CDM Project and Its Countmeasures (CCS 기술의 CDM 사업화 수용에 대한 방식과 절차 분석 및 대응방안 고찰)

  • Noh, Hyon-Jeong;Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.263-272
    • /
    • 2012
  • Carbon dioxide, emitted by human activities since the industrial revolution, is regarded as a major contributor of global warming. There are many efforts to mitigate climate change, and carbon dioxide capture and geological storage (CCS) is recognized as one of key technologies because it can reduce carbon dioxide emissions from large point sources such as a power station or other industrial installation. The inclusion of CCS as clean development mechanism (CDM) project activities has been considered at UNFCCC as financial incentive mechanisms for those developing countries that may wish to deploy the CCS. Although the Conference of the Parties serving as the Meeting of the Parties to the UNFCCC's Kyoto Protocol (CMP), at Cancun in December 2010, decided that CCS is eligible as CDM project activities, the issues identified in decision 2/CMP.5 should be addressed and resolved in a satisfactory manner. Major issues regarding modalities and procedure are 1) Site selection, 2) Monitoring, 3) Modeling, 4) Boundaries, 5) Seepage Measuring and Accounting, 6) Trans-Boundary Effects, 7) Accounting of Associated Project Emissions (Leakage), 8) Risk and Safety Assessment, and 9) Liability Under the CDM Scheme. The CMP, by its decision 7/CMP.6, invited Parties to submit their views to the secretariat of Subsidiary Body for Scientific and Technological Advice (SBSTA), SBSTA prepared a draft modalities and procedure by exchanging views of Parties through workshop held in Abu Dhabi, UAE (September 2011). The 7th CMP (Durban, December 2011) finally adopted the modalities and procedures for CCS as CDM project activities (CMP[2011], Decision-/CMP.7). The inclusion of CCS as CDM project activities means that CCS is officially accredited as one of $CO_2$ reducing technologies in global carbon market. Consequently, it will affect relevant technologies and industry as well as law and policy in Korea and aboard countries. This paper presents a progress made on discussion and challenges regarding the issue, and aims to suggest some considerations to policy makers in Korea in order to demonstrate and deploy the CCS project in the near future. According to the adopted modalities and procedures for CCS as CDM project activities, it is possible to implement relevant CCS projects in Non-Annex I countries, including Korea, as long as legal and regulatory frameworks are established. Though Korea enacted 'Framework Act on Low Carbon, Green Growth', the details are too inadequate to content the requirements of modalities and procedures for CCS as CDM project. Therefore, it is required not only to amend the existing laws related with capture, transport, and storage of $CO_2$ for paving the way of an prompt deployment of CCS CDM activities in Korea as a short-term approach, but also to establish the united framework as a long-term approach.

Trends of Underground $CO_2$ Storage Technology for the Large Scale Reduction of GHG (온실가스 대량감축을 위한 $CO_2$ 지중저장의 기술 동향)

  • Chae, Kwagn-Seok;Lee, Sang-Pil;Yoon, Sung-Wook;Matsuoka, Toshifumi
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.309-317
    • /
    • 2010
  • CCS (Carbon dioxide Capture and Storage) is a means of mitigating the contribution of $CO_2$ to the Greenhouse gas, from large point sources such as power plants and steel companies. CCS is a process whereby $CO_2$ is captured from gases produced by fossil fuel combustion, compressed, transported and injected into deep geologic formations for permanent storage. CCS applied to a conventional power plant can reduce $CO_2$ emissions to the atmosphere by approximately 80~90% compared to a plant without CCS. The IPCC estimates that the economic potential of CCS will be between 10% and 55% of the total carbon mitigation effort by year 2100. In this paper, overseas sites where CCS technology is being applied and technical development trends for CCS are briefly reviewed.

A Study on the Impact of CO2 Immersion Test for Rubber Sealing Materials (고무 씰링 재료에 대한 CO2 침지 영향에 관한 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.26-32
    • /
    • 2014
  • CCS(Carbon Capture and Storage) which is technic to capture and storage the carbon-dioxide is the method that reduces the carbon-dioxide from the industries to prevent earth from the global warming. In order to apply to the practical site, it is inevitable to investigate the possibility of damage in the pipe or components by carbon-dioxide. In this paper, the immersion test is performed to estimate the suitability of the rubber which is used to seal or connect the pipelines because the rubber has not been validated. Also, the immersion test is carried out in a certain condition(pre- and supercritical state).

Analysis on Dynamic Ductile Fracture of Transportation Pipeline for Carbon Dioxide Capture and Storage System (CO2 배관의 연속연성파괴 분석)

  • Jeong, Hyo-Tae;Choe, Byung-Hak;Kim, Woo-Sik;Baek, Jong-Hyeon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.13-19
    • /
    • 2014
  • Dynamic ductile fracture (DDF) has been studied in the transportation pipeline for the carbon dioxide capture and storage(CCS) system. DDF behavior of CCS transportation pipeline has been analyzed using Battelle Two Curve Method (BTCM) and compared with the DDF behavior of natural gas pipeline. The operating safety criteria against the DDF has been investigated based on the sensitivity analyses of the pipe thickness and the operating temperature for the $CO_2$ pipeline. The DDF criteria can be applied to confirm the operating safety of the $CO_2$ pipeline. If the commercial natural gas pipeline were used at room temperature as a $CO_2$ pipeline, the thickness of pipe should be at least 7mm and the pressure should be less than 54bar for the $CO_2$ pipeline system.

Strategic Planning of Carbon Capture & Storage (CCS) Infrastructure Considering the Uncertainty in the Operating Cost and Carbon Tax (불확실한 운영비용과 탄소세를 고려한 CCS 기반시설의 전략적 계획)

  • Han, Jee-Hoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.471-478
    • /
    • 2012
  • A carbon capture and storage (CCS) plays a very important role to reduce $CO_2$ dramatically in $CO_2$ emission sources which are distributed throughout various areas. Numerous research works have been undertaken to analyze the techno-economic feasibility of planning the CCS infrastructure. However, uncertainties such as $CO_2$ emissions, $CO_2$ reduction costs, and carbon taxes may exist in various impact factors of the CCS infrastructure. However, few research works have adopted these uncertainties in designing the CCS infrastructure. In this study, a two-stage stochastic programming model is developed for planning the CCS infrastructure under uncertain operating costs and carbon taxes. It can help determine where and how much $CO_2$ to capture, store or transport for the purpose of minimizing the total annual $CO_2$ reduction cost in handling the uncertainties while meeting the $CO_2$ mitigation target. The capability of the proposed model to provide correct decisions despite changing the operating costs and carbon taxes is tested by applying it to a real case study based on Korea. The results will help to determine planning of a CCS infrastructure under uncertain environments.

Global Trend of CO2 Capture Technology Development (이산화탄소 포집기술 국외 기술개발 동향)

  • Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.143-165
    • /
    • 2016
  • The amount of greenhouse gas emission reduction based on INDCs (Intended Nationally Determined Contributions) submitted to UN by each party is not sufficient to achieve the Paris Agreement's aim to "hold the increase in the global average temperature to well below $2^{\circ}C$ above pre-industrial levels and to pursue efforts to limit the temperature increase to $1.5^{\circ}C$" which was determined in the $21^{st}$ Conference of the Parties to the UNFCCC (COP 21). Accordingly, the emission reduction target of each party will be revised for the $2^{\circ}C$ goal. Among the several options to reduce the carbon emission, CCS (Carbon Capture and Storage) is a key option to curb $CO_2$ emissions from large emission sources such as fossil-based power plants, cement plants, and steel production plants. A large scale CCS demonstration projects utilizing $1^{st}$ generation $CO_2$ capture technologies are under way around the world. It is anticipated, however, that the deployment of those $1^{st}$ generation $CO_2$ capture technologies in great numbers without government support will be difficult due to the high capture cost and considerable increase of cost of electricity. To reduce the carbon capture cost, $2^{nd}$ and $3^{rd}$ generation technologies are under development in a pilot or a bench scale. In this paper, current status of large scale CCS demonstration projects and the $2^{nd}$ and $3^{rd}$ generation capture technologies are summarized. Novel capture technologies on wet scrubbing, dry sorbent, and oxygen combustion are explained in detail for all capture areas: post-combustion capture, pre-combustion capture, and new combustion technologies.

Fault Tree Analysis for Risk Assessment of CO2 Leakage from Geologic Storage (지중 저장 이산화탄소의 누출 위험도 평가를 위한 결함수 분석)

  • Lee, Sang Il;Lee, Sang Ki;Hwang, Jin Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.359-366
    • /
    • 2009
  • CCS (Carbon Capture and Storage) is considered as the most promising interim solution to deal with the greenhouse gas such as $CO_2$ responsible for global warming. Even though carefully chosen geologic formations are known to contain stored gas for a long time period, there are potential risks of leakage. Up to now, applicable risk assessment procedures for the leakage of $CO_2$ are not available. This study presents a basis for risk analysis applicable to a complex geologic storage system. It starts with the classification of potential leakage pathways. Receptors and the leakage effect on them are identified and quantified. Then, a fault tree is constructed, which yields the minimum cut set (i.e., the most vulnerable leakage pathway) and quantifies the probability of the leakage risk through the cut set. The methodology will provide a tool for risk assessment in a CCS project. The outcomes of the assessment will not only ensure the safety of the CCS system but also offer a reliable and efficient monitoring plan.

Development of a Simulator for the Intermediate Storage Hub Selection Modeling and Visualization of Carbon Dioxide Transport Using a Pipeline (파이프라인을 이용한 이산화탄소 수송에서 중간 저장 허브 선정 모델링 및 시각화를 위한 시뮬레이터 개발)

  • Lee, Ji-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.373-382
    • /
    • 2016
  • Carbon dioxide Capture and Storage/Sequestration (CCS) technology has attracted attention as an ideal method for most carbon dioxide reduction needs. When the collected carbon dioxide is transported to storage via pipelines, the direct transport is made if the storage is close, otherwise it can also be transported via an intermediate storage hub. Determining the number and the location of the intermediate storage hubs is an important problem. A decision-making algorithm using a mathematical model for solving the problem requires considerably more variables and constraints to describe the multi-objective decision, but the computational complexity of the problem increases and it also does not guarantee the optimality. This research proposes an algorithm to determine the location and the number of the intermediate storage hub and develop a simulator for the connection network of the carbon dioxide emission site. The simulator also provides the course of transportation of the carbon dioxide. As a case study, this model is applied to Korea.

Seismic Imaging of Ocean-bottom Seismic Data for Finding a Carbon Capture and Storage Site: Two-dimensional Reverse-time Migration of Ocean-bottom Seismic Data Acquired in the Pohang Basin, South Korea (이산화탄소 지중저장 부지 선정을 위한 해저면 탄성파 탐사자료의 영상화: 포항 영일만 해저면 탐사자료의 2차원 역시간 구조보정)

  • Park, Sea-Eun;Li, Xiangyue;Kim, Byoung Yeop;Oh, Ju-Won;Min, Dong-Joo;Kim, Hyoung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.78-88
    • /
    • 2021
  • Owing to the abnormal weather conditions due to global warming, carbon capture and storage (CCS) technology has attracted global attention as a countermeasure to reduce CO2 emissions. In the Pohang CCS demonstration project in South Korea, 100 tons of CO2 were successfully injected into the subsurface CO2 storage in early 2017. However, after the 2017 Pohang earthquake, the Pohang CCS demonstration project was suspended due to an increase in social concerns about the safety of the CCS project. In this study, to reconfirm the structural suitability of the CO2 storage site in the Pohang Basin, we employed seismic imaging based on reverse-time migration (RTM) to analyze small-scale ocean-bottom seismic data, which have not been utilized in previous studies. Compared with seismic images using marine streamer data, the continuity of subsurface layers in the RTM image using the ocean-bottom seismic data is improved. Based on the obtained subsurface image, we discuss the structural suitability of the Pohang CO2 storage site.