DOI QR코드

DOI QR Code

Seismic Imaging of Ocean-bottom Seismic Data for Finding a Carbon Capture and Storage Site: Two-dimensional Reverse-time Migration of Ocean-bottom Seismic Data Acquired in the Pohang Basin, South Korea

이산화탄소 지중저장 부지 선정을 위한 해저면 탄성파 탐사자료의 영상화: 포항 영일만 해저면 탐사자료의 2차원 역시간 구조보정

  • Park, Sea-Eun (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Li, Xiangyue (Research Institute of Energy and Resources, Seoul National University) ;
  • Kim, Byoung Yeop (Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Oh, Ju-Won (Department of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • Min, Dong-Joo (Department of Energy Systems Engineering, Seoul National University) ;
  • Kim, Hyoung-Soo (Department of Electrical and Electronic Engineering, Jungwon University)
  • 박세은 (전북대학교 자원.에너지공학과) ;
  • 이향월 (서울대학교 에너지자원신기술연구소) ;
  • 김병엽 (한국지질자원연구원 석유해저연구본부) ;
  • 오주원 (전북대학교 자원.에너지공학과) ;
  • 민동주 (서울대학교 에너지자원공학과) ;
  • 김형수 (중원대학교 전기전자공학과)
  • Received : 2021.07.14
  • Accepted : 2021.08.23
  • Published : 2021.08.31

Abstract

Owing to the abnormal weather conditions due to global warming, carbon capture and storage (CCS) technology has attracted global attention as a countermeasure to reduce CO2 emissions. In the Pohang CCS demonstration project in South Korea, 100 tons of CO2 were successfully injected into the subsurface CO2 storage in early 2017. However, after the 2017 Pohang earthquake, the Pohang CCS demonstration project was suspended due to an increase in social concerns about the safety of the CCS project. In this study, to reconfirm the structural suitability of the CO2 storage site in the Pohang Basin, we employed seismic imaging based on reverse-time migration (RTM) to analyze small-scale ocean-bottom seismic data, which have not been utilized in previous studies. Compared with seismic images using marine streamer data, the continuity of subsurface layers in the RTM image using the ocean-bottom seismic data is improved. Based on the obtained subsurface image, we discuss the structural suitability of the Pohang CO2 storage site.

지구온난화로 인한 이상기후현상들이 지속되면서 온실가스 배출을 줄이기 위한 방안으로 이산화탄소 포집 및 저장(Carbon Capture and Storage, CCS) 기술이 전세계적인 주목을 받고 있는 가운데, 국내에서는 2017년 포항분지 영일만 해상 CO2 지중저장 실증 부지에 소규모의 CO2를 성공적으로 주입하였다. 하지만 2017년 발생한 포항지진으로 인하여 국내 CO2 지중저장 사업의 안전성에 대한 사회적 우려가 심각해지면서 포항분지 영일만 CO2 지중저장 실증 사업은 중단되었다. 이 연구에서는 기존 연구에서 활용되지 않았던 해저면 탄성파 탐사자료를 영상화하여, 포항분지 영일만 CO2 지중저장 부지의 구조적 적합성을 재확인하고자 한다. 기존의 스트리머(streamer) 탐사자료를 이용한 영상화 결과와 비교하였을 때, 해저면 탄성파 탐사자료에 역시간 구조보정 기법을 적용한 영상에서 지층의 연속성이 개선되는 것을 확인하였다. 새로 획득한 역시간 구조보정 영상을 기반으로, 포항 영일만 CO2 지중저장 부지의 저장층으로서의 적합성에 대하여 논의하였다.

Keywords

Acknowledgement

본 연구는 2019년과 2020년도 정부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(NRF-2019K1A3A1A80113341, NRF-2020R1I1A3073977). 또한 2016년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20162010201980).

References

  1. Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1983, Reverse time migration, Geophysics, 48(11), 1514-1524, doi: 10.1190/1.1441434
  2. Cheong, S., and Kim, B.-Y., 2020, Time-lapse Seismic Monitoring Technique for the Otway Site, J. Korea Inst. Mineral Eng., 57(1), 35-44 (in Korean with English abstract). doi: 10.32390/ksmer.2020.57.1.035
  3. Choi, B.-Y., Shinn, Y.-J., Park, Y.-C., Park, J., Kwon, Y.-K., and Kim, K.-Y., 2017, Simulation of CO2 injection in a smallscale pilot site in the Pohang Basin, Korea: Effect of dissolution rate of chlorite on mineral trapping, Int. J. Greenh. Gas Control., 59, 1-12, doi: 10.1016/j.ijggc.2017.02.001
  4. Claerbout, J. F., 1985, Imaging the Earth's interior, Blackwell Scientific Publications, 377-378, http://sepwww.stanford.edu/data/media/public/sep/prof/toc_html/iei2/40_00.pdf
  5. Farmer, P., Zhou, Z. Z., and Jones, D., 2009, The role of reverse time migration in imaging and model estimation, Lead. Edge, 28(4), 436-441, doi: 10.1190/1.3112761
  6. Furre, A. K., Eiken, O., Alnes, H., Vevatne, J. N., and Kiaer, A. F., 2017, 20 years of monitoring CO2-injection at Sleipner, Energy Procedia, 114, 3916-3926, doi: 10.1016/j.egypro.2017.03.1523
  7. Gazdag, J., and Sguazzero, P., 1984, Migration of seismic data. Proceedings of the IEEE, 72(10), 1302-1315, doi: 10.1109/PROC.1984.13019
  8. Global CCS Institute, 2019, The Global Status of CCS: 2019, Global CCS Institute, 1-85, https://www.globalccsinstitute.com/resources/publications-reports-research/global-status-ofccs-report-2019/
  9. Global CCS Institute, 2020, The Global Status of CCS: 2020, Global CCS Institute, 1-80, https://www.globalccsinstitute.com/resources/global-status-report/
  10. Gwon, L.-G., 2016, Review of CO2 storage projects and driving strategy of CO2 storage program in Korea, KEPCO Journal on Electric Power and Energy, 2(2), 167-185 (in Korean). doi: 10.18770/kepco.2016.02.02.167
  11. Hemon, C. H., 1978, Equations d'onde et modeles, Geophys. Prospect., 26(4), 790-821, doi: 10.1111/j.1365-2478.1978.tb01634.x
  12. Huh, D.-G., and Park, Y.-C., 2009, Status of Otway CO2 Storage Project in Australia, J. Geol. Soc. Korea, 45(5), 517-525 (in Korean with English abstract). https://scholar.google.com/scholar?hl=ko&as_sdt=0%2C5&q=Huh%2C+D.-G.%2C+and+Park%2C+Y.-C.%2C+2009%2C+Status+of+Otway+CO2+Storage+Project+in+Australia%2C+J.+Geol.+Soc.+Korea&btnG=
  13. IPCC, 2013, Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, in Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M., Eds., Cambridge Univ. Press, 1-1535, doi: 10.1017/CBO9781107415324
  14. Jenkins, C. R., Cook, P. J., Ennis-King, J., Undershultz, J., Boreham, C., Dance, T., Caritat, P., Etheridge, D. M., Freifeld, B. M., Hortle, A., Kirste, D., Paterson, L., Pevzner, R., Schacht, U., Sharma, S., Stalker, L., and Urosevic, M., 2012, Safe storage and effective monitoring of CO2 in depleted gas fields, PNAS, 109(2), E35-E41, doi: 10.1073/pnas.1107255108
  15. KIGAM, 2014a, Characterization of storage strata and development of basis design technology for demonstration of CO2 geological storage, Korea Institute of Geoscience and Mineral Resources, GP2012-030-2014(2), 441p (in Korean with English abstract).
  16. KIGAM, 2014b, Site selection for pilot-scale CO2 geologic storage in the Korean Peninsula, Korea Institute of Geoscience and Mineral Resources, NP2012-026-2014(1), 443p (in Korean with English abstract).
  17. Ko, J., 2013, Review of site selection criteria for geological storage of carbon dioxide, J. Korean Soc. Miner. Energy Resour. Eng., 50(5), 732-749 (in Korean with English abstract). https://www.jksmer.or.kr/articles/article/Gjx8/ https://doi.org/10.12972/ksmer.2013.50.5.732
  18. Kwon, Y. K., 2018, Demonstration-scale offshore CO2 storage project in the Pohang Basin, Korea, The J. Eng. Geol., 28(2), 133-160 (in Korean with English abstract). doi: 10.9720/kseg.2018.2.133
  19. Lee, B.-J., and Song, K.-Y., 1995, Interpretation of geologic structure in Tertiary Pohang basin, Korea, Econ. Environ. Geol., 28(1), 69-77 (in Korean with English abstract). https://www.koreascience.or.kr/article/JAKO199523034627687.page
  20. Lee, B.-J., 2002, Tertiary basin in Korean peninsula and the study of geologic structure at Pohang basin, Seminar and Field Workshop for Mudstone and Shale, 3-17 (in Korean with English abstract). https://www.koreascience.or.kr/article/CFKO200211921751778.page
  21. Lee, T.-H., Yi, K., Cheong, C., Jeong, Y.-J., Kim, N., and Kim, M.-J., 2014, SHRIMP U-Pb Zircon Geochronology and Geochemistry of Drill Cores from the Pohang Basin, Jour. Petrol. Soc. Korea, 23(3), 167-185 (in Korean with English abstract). https://www.koreascience.or.kr/article/JAKO201431454588559.page https://doi.org/10.7854/JPSK.2014.23.3.167
  22. Lee, T. J., Han, N., Ko, K. B., Hwang, S., Park, K. G., Kim, H. C., and Park, Y.-C., 2009, Site investigation for pilot scale CO2 sequestration by magnetotelluric surveys in Uiseong, Korea, Geophys. and Geophys. Explor., 12(4), 299-308 (in Korean with English abstract). https://www.koreascience.or.krarticle/JAKO200909659872704.page
  23. Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S., and Aiken, T., 2010, Geological storage of CO2 in saline aquifers-A review of the experience from existing storage operations, Int. J. Greenh. Gas Control, 4(4), 659-667, doi: 10.1016/j.ijggc.2009.12.011
  24. Park, M.-H., Lee, C. S., Kim, B.-Y., Kim, J.-H., Kim, K. J., and Shinn, Y. J., 2018, Preliminary results of the pre-injection monitoring survey at an offshore CO2 injection site in the Yeongil Bay, The J. Eng. Geol., 28(2), 247-258 (in Korean with English abstract). doi: 10.9720/kseg.2018.2.247
  25. Park, Y.-C., Lee, C., Seo, Y.-J., and Cheong, S., 2016, CO2 monitoring in stage 2C of CO2CRC Otway project, J. Korean Soc. Miner. Energy Resour. Eng., 53(5), 511-522 (in Korean with English abstract). https://www.jksmer.or.kr/articles/article/4Gvo/ https://doi.org/10.12972/ksmer.2016.53.5.511
  26. Pratt, R. G., Shin, C., and Hicks, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophys. J. Int., 133(2), 341-362, doi: 10.1046/j.1365-246X.1998.00498.x
  27. Ryoo, T. S., and Koh, M. H., 2019, Legal Measures of Earthquake Hazards for CCS Underground Storage, Soongsil Law Review, 44, 213-254 (in Korean with English abstract). doi: 10.35867/ssulri.2019.44..008
  28. Shin, C., Jang, S., and Min, D.-J., 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory, Geophys. Prospect., 49(5), 592-606, doi: 10.1046/j.1365-2478.2001.00279.x
  29. Shinn, Y. J., Kwon, Y. K., Yoon, J.-R., Kim, B.-Y., and Cheong, S., 2018, Result of CO2 geological storage site survey for small-scale demonstration in Pohang Basin, Yeongil Bay, SE Korea, The J. Eng. Geol., 28(2), 161-174 (in Korean with English abstract). doi: 10.9720/kseg.2018.2.161
  30. Song, C. W., Son, M., Sohn, Y. K., Han, R., Shinn, Y. J., and Kim, J.-C., 2015, A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea, J. Geol. Soc. Korea, 51(1), 53-66 (in Korean with English abstract). doi: 10.14770/jgsk.2015.51.1.53
  31. Trainor-Guitton, W., Guitton, A., Jreij, S., Powers, H., and Sullivan, B., 2019, 3D imaging of geothermal faults from a vertical DAS fiber at Brady Hot Spring, NV USA, Energies, 12(7), 1-15, doi: 10.3390/en12071401
  32. Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics, Geopysics, 74(6), WCC1-WCC26, doi: 10.1190/1.3238367
  33. Whittaker, S., Rostron, B., Hawkes, C., Gardner, C., White, D., Johnson, J., Chalaturnyk, R., and Seeburger, D., 2011, A decade of CO2 injection into depleting oil fields: monitoring and research activities of the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project, Energy Procedia, 4, 6069-6076, doi: 10.1016/j.egypro.2011.02.612
  34. WMO, 2019, The Global Climate in 2015-2019, World Meteorological Organization. https://library.wmo.int/doc_num.php?explnum_id=9936
  35. Woo, K. S., Noh, J. H., and Park, K.-H., 2003, The origin of the carbonate concretions in the Yeonil Group, Pohang Basin, J. Geol. Soc. Korea, 39(1), 1-24 (in Korean with English abstract). https://scholar.google.com/scholar?hl=ko&as_sdt=0%2C5&scioq=The+origin+of+the+carbonate+concretions+in+the+Yeonil+Group%2C+Pohang+Basin%2C+J.+Geol.+Soc.+Korea&q=Woo%2C+K.+S.%2C+Noh%2C+J.+H.%2C+and+Park%2C+K.-H.%2C+2003%2C+The+origin+of+the+carbonate+concretions+in+the+Yeonil+Group%2C+Pohang+Basin%2C+J.+Geol.+Soc.+Korea&btnG=
  36. Yang, Y., Liu, L., Chen, J., and Chen, X., 2014, Accurate seismic imaging methods on complex fault blocks of Subei basin, Advances in Petroleum Exploration and Development, 8(2), 13-17, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.674.5295&rep=rep1&type=pdf
  37. Yoo, D. G., Kim, G. Y., Park, Y. C., Huh, D. G., and Yoon, C. H., 2007, Feasibility study for CO2 geological sequestration in offshore Korean Peninsula, J. Korean Soc. Geosystem Eng., 44(6), 572-585 (in Korean with English abstract). https://www.jksmer.or.kr/articles/article/XwRY/
  38. Yoon, S., 2010, Tectonic history of the Tertiary Yangnam and Pohang Basins, Korea, J. Geol. Soc. Korea, 46(2), 95-110 (in Korean with English abstract). https://scholar.google.com/scholar?hl=ko&as_sdt=0%2C5&q=Yoon%2C+S.%2C+2010%2C+Tectonic+history+of+the+Tertiary+Yangnam+and+Pohang+Basins%2C+Korea%2C+J.+Geol.+Soc.+Korea&btnG=
  39. Yoon, S., Chang, K.-H., You, H.-S., and Lee, Y.-G., 1991, Tectonic history of the Tertiary basins of the southern Korean Peninsula, Jour. Korean Inst. Mining Geol., 24(3), 301-308 (in Korean with English abstract). https://www.koreascience.or.kr/article/JAKO199123034628397.page