• Title/Summary/Keyword: carbon capture and storage(CCS)

Search Result 114, Processing Time 0.018 seconds

Detection of Potential Flow Paths of Leaked CO2 from Underground Storage Using Electrical Resistivity Survey (전기비저항탐사 방법에 의한 지중 저장 이산화탄소 누출 가능 경로 탐지)

  • Lim, Woo-Ri;Hamm, Se-Yeong;Hwang, Hak-Soo;Kim, Sung-Wook;Jeon, Hang-Tak
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.69-79
    • /
    • 2018
  • The Korean government attempts to reduce $CO_2$ emissions by 37% to 314.7 Mt $CO_2$, down from the estimated 850.6 Mt $CO_2$ until 2030 in order to confront green house effect. In this context, in 2014, Korean government launched $CO_2$ Storage Environmental Management Research (K-COSEM) Center for carrying out pilot-scale research on $CO_2$ leakage from underground $CO_2$ storage facilities. For the detection of $CO_2$ leakage, it is necessary to identify hydrologeological and geophysical characteristics of the subject area. In the study site of Naesan-ri, Daeso-myeon, Eumseong-gun, Chungbuk Province, two times injection tests (June 28-July 24, 2017 and August 07-September 11, 2017) of $CO_2$ and $SF_6$ dissolved waters, respectively, was conducted to understand the leakage behavior of $CO_2$ from underground. The injection well was drilled to a depth of 24 m with a 21-m casing and screen interval of 21~24 m depth. Two times resistivity surveys on August 18, 2017 and September 1, 2017, were conducted for revealing the flow of the injected water as well as the electrical properties of the study site. The study results have shown that the high-resistivity zone and the low-resistivity zone are clearly contrasted with each other and the flow direction of the injected water is similar to natural groundwater flow. Besides, the low resistivity zone is widely formed from the depth of injection to the shallow topsoil, indicating that the weathered zone of high permeability has high $CO_2$ leakage potential.

Influence of Increased Carbon Dioxide Concentration on the Bioluminescence and Cell Density of Marine Bacteria Vibrio fischeri (이산화탄소 농도 증가에 따른 발광미생물의 상대발광량과 밀도변화에 대한 연구)

  • Sung, Chan-Gyoung;Moom, Seong-Dae;Kim, Hye-Jin;Choi, Tae-Seob;Lee, Kyu-Tae;Lee, Jung-Suk;Kang, Seong-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • An experiment was conducted to evaluate the biologically adverse effect of increased carbon dioxide in seawater on marine bacteria, Vibrio fischeri. We measured the bioluminescence and cell density at every 6 hours for 24 hours of the whole incubation period after exposing test microbes to a range of $CO_2$ concentration such as 380(Control), 1,000, 3,000, 10,000 and 30,000 ppm, respectively. Significant effect on relative luminescence(RLU) of V. fischeri was observed in treatments with $CO_2$ concentration higher than 3,000 ppm at t=12 h. However, the difference of RLU among treatments significantly decreased with the incubation time until t=24 h. Similar trend was observed for the variation of cell density, which was measured as optical density using spectrophotometer. The results showed that a significant relationship between $CO_2$ concentration and bioluminescence of test microbes was observed for the mean time. However, the inhibition of relative bioluminescence and also cell density could be recovered at the concentration levels higher than 3,000 ppm. The dissolved $CO_2$ can be absorbed directly by cell and it can decrease the intracellular pH. Our results implied that microbes might be adversely affected at the initial growing phase by increased $CO_2$. However, they could adapt by increasing ion transport including bicarbonate and then could make their pH back to normal level. Results of this study could be supported to understand the possible influence on marine bacteria by atmospheric increase of $CO_2$ in near future and also by released $CO_2$ during the marine $CO_2$ sequestration activity.

Swelling and Mechanical Property Change of Shale and Sandstone in Supercritical CO2 (초임계 CO2에 의한 셰일 및 사암의 물성변화 및 스웰링에 관한 연구)

  • Choi, Chae-Soon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.266-275
    • /
    • 2012
  • In this study, a method is devised to implement a supercritical $CO_2$ ($scCO_2$) injection environment on a laboratory scale and to investigate the effects of $scCO_2$ on the properties of rock specimens. Specimens of shale and sandstone normally constituting the cap rock and reservoir rock, respectively, were kept in a laboratory reactor chamber with $scCO_2$ for two weeks. From this stage, a chemical reaction between rock surface and the $scCO_2$ was induced. The effect of saline water was also investigated by comparing three conditions ($scCO_2$-rock, $scCO_2-H_2O$-rock and $scCO_2$-brine(1M)-rock). Finally, we checked the changes in the properties before and after the reaction by destructive and nondestructive testing procedures. The swelling of shale was a main concern in this case. The experimental results suggested that $scCO_2$ has a greater effect on the swelling of the shale than pure water and brine. It was also observed that the largest swelling displacement of shale occurred after a reaction with the $H_2O-scCO_2$ solution. The results of a series of the destructive and nondestructive tests indicate that although each of the property changes of the rock differed depending on the reaction conditions, the $H_2O-scCO_2$ solution had the greatest effect. In this study, shale was highly sensitive to the reaction conditions. These results provide fundamental information pertaining to the stability of $CO_2$ storage sites due to physical and chemical reactions between the rocks in these sites and $scCO_2$.

Effects of Artificial CO2 Release in Soil on Chlorophyll Content and Growth of Pinus densiflora and Quercus variabilis Seedlings (토양 내 인위적인 이산화탄소 누출에 따른 소나무와 굴참나무 묘목의 엽록소 함량과 생장 반응)

  • Kim, Hyun-Jun;Han, Seung Hyun;Kim, Seongjun;Chang, Hanna;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.351-360
    • /
    • 2018
  • This study was conducted to analyze the responses of chlorophyll contents and growth of Pinus densiflora and Quercus variabilis seedlings on distance from the well and $CO_2$ flux after the artificial $CO_2$ release. From June 1 to 30, 2016, $CO_2$ gas was injected at the rate of $6L\;min^{-1}$ at the study site in Eumseong. Chlorophyll content was analyzed in the middle of July, 2016, and root collar diameter (RCD), height (H), and biomass were measured in May and December, 2016 after planting 2-year-old P. densiflora and 1-year-old Q. variabilis seedlings in May, 2015. The chlorophyll content of P. densiflora seedlings did not show a significant correlation with $CO_2$ flux, whereas the chlorophyll content of Q. variabilis seedlings showed a significant negative correlation with increasing $CO_2$ flux (P<0.05). The RCD and H growth rates of both species showed the significant difference in the distance from the well of the $CO_2$ anthropogenic release treatment. In particular, the RCD and H growth rate of P. densiflora seedlings and the RCD growth rate of Q. variabilis seedlings increased significantly as the seedlings were closer to the well, but the H growth rate of Q. variabilis seedlings decreased significantly. In addition, as the $CO_2$ concentration in the ground increases, ${\Delta}R/S$ ratio increases in both species, suggesting that the high $CO_2$ concentration in the soil promotes carbon distribution relative to the root part. The results of this study can be used as data necessary to monitor the $CO_2$ leakage and physiological and growth responses of both species to leakage of stored $CO_2$ in the future.