DOI QR코드

DOI QR Code

Detection of Potential Flow Paths of Leaked CO2 from Underground Storage Using Electrical Resistivity Survey

전기비저항탐사 방법에 의한 지중 저장 이산화탄소 누출 가능 경로 탐지

  • Received : 2018.02.19
  • Accepted : 2018.03.20
  • Published : 2018.03.31

Abstract

The Korean government attempts to reduce $CO_2$ emissions by 37% to 314.7 Mt $CO_2$, down from the estimated 850.6 Mt $CO_2$ until 2030 in order to confront green house effect. In this context, in 2014, Korean government launched $CO_2$ Storage Environmental Management Research (K-COSEM) Center for carrying out pilot-scale research on $CO_2$ leakage from underground $CO_2$ storage facilities. For the detection of $CO_2$ leakage, it is necessary to identify hydrologeological and geophysical characteristics of the subject area. In the study site of Naesan-ri, Daeso-myeon, Eumseong-gun, Chungbuk Province, two times injection tests (June 28-July 24, 2017 and August 07-September 11, 2017) of $CO_2$ and $SF_6$ dissolved waters, respectively, was conducted to understand the leakage behavior of $CO_2$ from underground. The injection well was drilled to a depth of 24 m with a 21-m casing and screen interval of 21~24 m depth. Two times resistivity surveys on August 18, 2017 and September 1, 2017, were conducted for revealing the flow of the injected water as well as the electrical properties of the study site. The study results have shown that the high-resistivity zone and the low-resistivity zone are clearly contrasted with each other and the flow direction of the injected water is similar to natural groundwater flow. Besides, the low resistivity zone is widely formed from the depth of injection to the shallow topsoil, indicating that the weathered zone of high permeability has high $CO_2$ leakage potential.

한국 정부는 온실효과에 대응하기 위해서 이산화탄소 배출을 850.6 Mt에서 2030년까지 314.7 Mt (37%)로 감축하기로 하였다. 이러한 상황에서, 한국 정부는 이산화탄소 지중저장시설로부터 누출되는 이산화탄소를 시함부지 규모로 연구하기 위하여 2014년에 이산화탄소 지중저장 환경관리연구단(K-COSEM)을 발족하였다. 이산화탄소의 누출을 탐지하기 위해서는 대산지역의 수리지질학적, 지구물리학적 특성을 규명하는 것이 필요하다. 본 연구에서는, 충북 음성군 대소면 내산리의 연구부지에서 2017년 6월 28일부터 7월 24일과 8월 7일부터 9월 11일까지 두 차례에 걸쳐서 각각 $CO_2$$SF_6$를 용해시킨 물을 지하에 주입하여 지하에서의 이산화탄소 누출 거동을 알아내고자 하였다. 주입정은 심도 24 m, 케이싱은 21 m까지, 스크린 구간은 심도 21~24 m 구간이다. 2017년 8월 18일과 9월 1일의 두 차례 전기비저항탐사로 주입수의 흐름과 전기비저항 특성을 파악하고자 하였다. 연구 결과에 의하면, 고 전기비저항대와 저 전기비저항대가 뚜렷하게 구별되며, 주입수의 유동방향은 자연상태의 지하수 흐름과 비슷하게 나타났다. 또한, 저 전기비저항대는 주입심도로부터 천부 표토층까지 광범위하게 형성되며, 이는 높은 투수성을 가지는 풍화대가 이산화탄소 누출 가능성이 높다는 것을 지시한다.

Keywords

References

  1. Apps, J.A., Birkholzer, J.T., Spycher, N., Zheng, L., Ambats, G., Herkelrath, W.N., Kharaka, Y.K., Thordsen, J.J., Kakouros, E., Beers, S., 2010, Groundwater Chemistry Changes as a Result of $CO_2$ Injection at the ZERT Field Site in Bozeman, Montana, Project Report, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 2010, 25-68.
  2. Beyer, W., 1966, Hydrogeological investigations in the deposition of water pollutants, Journal of Applied Geology, 12(1), 599-606.
  3. Chae, Y.-R., 2010, Preliminary analysis of climate change damage in Korea using the PAGE model, Environmental Policy Research, 9(1), 31-55. https://doi.org/10.17330/joep.9.1.201003.31
  4. Choi, H., Piao, J., Woo, N.C., Cho, H., 2017, Hydrochemical variations in selected geothermal groundwater and carbonated springs in Korea: a baseline study for early detection of $CO_2$ leakage, Environmental Geochemistry and Health, 39(1), 109-123. https://doi.org/10.1007/s10653-016-9813-5
  5. Chwae, U., Lee, D.Y., Lee, B.J., Ryoo, C.R., Choi, P.Y., Choi, S.J., Cho, D.L., Kim, J.Y., Lee, C.B., Kee, W.S., Yang, D.Y., Kim, I.J., Kim, Y., Yoo, J.H., Chae, B.G., Kim, W.Y., Kang, P.J., Yu, I.H., Lee, H. K., 1998, An Investigation and Evaluation of Capable Fault: Southeastern Part of the Korean Peninsula, Korea Institute of Geoscience and Mineral Resources, KR-98(C)-22, 301p.
  6. Freifeld, B., Zakim, S., Pan, L., Cutright, B., Sheu, M., Doughty, C., Held, T., 2013, Geothermal energy production coupled with CCS: a field demonstration at the SECARB Cranfield Site, Cranfield, Mississippi, USA. Energy Procedia, 37, 6595-6603. https://doi.org/10.1016/j.egypro.2013.06.592
  7. Hazen, A., 1892, Some Physical Properties of Sands and Gravels, with Special Reference to Their Use in Filtration, Report to Massachusetts State Board of Health.
  8. Humez, P., Negrel, P., Lagneau, V., Lions, J., Kloppmann, W., Gal, F., Girard, J. F., 2014, $CO_2$-water-mineral reactions during $CO_2$ leakage: geochemical and isotopic monitoring of a $CO_2$ injection field test, Chemical Geology, 368, 11-30. https://doi.org/10.1016/j.chemgeo.2014.01.001
  9. IPCC, 2013, Technical Report, In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, USA, 129p.
  10. Jang, E., Yun, S.-T., Choi, B.-Y., Chung, D., Kang, H., 2012, Status and Implications of Regulatory Frameworks for Environmental, Journal of Soil and Groundwater Environment, 17(6), 9-22. https://doi.org/10.7857/JSGE.2012.17.6.009
  11. Kasenow, M., 2002, Determination of Hydraulic Conductivity from Grain Size Analysis, Water Resources Publications LLC, 47-84.
  12. Kharka, Y.K., Cole, D.R., Thordsen, J.J., Kakouros, E., Nance, H.S., 2006, Gas-water-rock interactions in sedimentary basins: $CO_2$ sequestration in the Frio Formation, Texas, USA, Journal of Geochemical Exploration, 8, 183-186.
  13. Kim, J.H., 1998, Dipro 4 for Windows user manual, Hee Song Geotek. Co.
  14. Kim, K.-K., Hamm, S.-Y., Cheong, J.-Y., Kim, S.-O., Yun, S.-T., 2017, A natural analogue approach for discriminating leaks of $CO_2$ stored underground using groundwater geochemistry statistical methods, South Korea, Water, 9, 960. https://doi.org/10.3390/w9120960
  15. Kim, Y.-S., Cho, S.-H., Kyong, N.-H., Oh, H-S., Moon, K.-C., 1998, Analysis and simulation of SF6 tracer experiments for tracking the pollutant transport, Journal of Korea Air Pollution Research Association, 14(5), 395-410.
  16. Kozeny, J., 1953, Das wasser in boden, Grundwasserbewegung, In Hydraulik, Springer: Vienna, Austria, 280-445.
  17. Kwon, P.S., Kim, S., 2017, Scenario analysis for the achievement of the 2030 national greenhouse gas reduction goal in the Korean electricity sector, Environment Policy, 25(2), 129-163.
  18. Lee, K.-K., Lee, S. H., Yun, S.-T., Jeen, S.-W., 2016, Shallow groundwater system monitoring on controlled $CO_2$ release sites: a review on field experimental methods and efforts for $CO_2$ leakage detection, Geosciences Journal, 20(4), 569-583. https://doi.org/10.1007/s12303-015-0060-z
  19. Peter, A., Hornbruch, G., Dahmke, A., 2011, $CO_2$ leakage test in a shallow aquifer for investigating the geochemical impact of $CO_2$ on groundwater and for developing monitoring methods and concepts. Energy Procedia, 4, 4148-4153. https://doi.org/10.1016/j.egypro.2011.02.359
  20. Sharma, S., Cook, P., Berly, T., Lees, M., 2009, The $CO_2$ CRC Otway Project: Overcoming challenges from planning to execution of Australia's first CCS project, Energy procedia, 1(1), 1965-1972. https://doi.org/10.1016/j.egypro.2009.01.256
  21. Yun, S.-T., 2014, K-COSEM, Environmental Management Technology of $CO_2$ Storage; R & D Planning Report; Ministry of Environment: Sejong City, Korea.