DOI QR코드

DOI QR Code

Influence of Increased Carbon Dioxide Concentration on the Bioluminescence and Cell Density of Marine Bacteria Vibrio fischeri

이산화탄소 농도 증가에 따른 발광미생물의 상대발광량과 밀도변화에 대한 연구

  • Sung, Chan-Gyoung (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Moom, Seong-Dae (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Kim, Hye-Jin (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Choi, Tae-Seob (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Lee, Kyu-Tae (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Lee, Jung-Suk (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Kang, Seong-Gil (Maritime and Ocean Engineering Research Institute, KORDI)
  • 성찬경 ((주)네오엔비즈 환경안전연구소) ;
  • 문성대 ((주)네오엔비즈 환경안전연구소) ;
  • 김혜진 ((주)네오엔비즈 환경안전연구소) ;
  • 최태섭 ((주)네오엔비즈 환경안전연구소) ;
  • 이규태 ((주)네오엔비즈 환경안전연구소) ;
  • 이정석 ((주)네오엔비즈 환경안전연구소) ;
  • 강성길 (한국해양연구원 해양시스템안전연구소)
  • Received : 2009.12.15
  • Accepted : 2010.02.24
  • Published : 2010.02.28

Abstract

An experiment was conducted to evaluate the biologically adverse effect of increased carbon dioxide in seawater on marine bacteria, Vibrio fischeri. We measured the bioluminescence and cell density at every 6 hours for 24 hours of the whole incubation period after exposing test microbes to a range of $CO_2$ concentration such as 380(Control), 1,000, 3,000, 10,000 and 30,000 ppm, respectively. Significant effect on relative luminescence(RLU) of V. fischeri was observed in treatments with $CO_2$ concentration higher than 3,000 ppm at t=12 h. However, the difference of RLU among treatments significantly decreased with the incubation time until t=24 h. Similar trend was observed for the variation of cell density, which was measured as optical density using spectrophotometer. The results showed that a significant relationship between $CO_2$ concentration and bioluminescence of test microbes was observed for the mean time. However, the inhibition of relative bioluminescence and also cell density could be recovered at the concentration levels higher than 3,000 ppm. The dissolved $CO_2$ can be absorbed directly by cell and it can decrease the intracellular pH. Our results implied that microbes might be adversely affected at the initial growing phase by increased $CO_2$. However, they could adapt by increasing ion transport including bicarbonate and then could make their pH back to normal level. Results of this study could be supported to understand the possible influence on marine bacteria by atmospheric increase of $CO_2$ in near future and also by released $CO_2$ during the marine $CO_2$ sequestration activity.

해수의 용존 이산화탄소 증가가 해양미생물인 Vibrio fischeri의 발광량 및 세포밀도에 미치는 영향을 규명하고자 380(대조구), 1,000, 3,000, 10,000 그리고 30,000 ppm 농도구배에 24시간 동안 노출하고, 매 6시간마다 발광미생물의 발광량과 세포밀도 변화를 측정하였다. 5개 농도구배에 노출된 발광미생물의 발광량은 12시간째에 3,000 ppm 이상의 농도구배에서 대조구와 비교하여 발광량이 유의하게 감소하는 경향을 보였다. 하지만 24시간째에는 30,000 ppm 농도 조건에서만 대조구와 유의한 차이를 보였으며, 10,000 ppm 이하 농도 조건에서는 차이를 보이지 않았다. 발광미생물의 세포밀도는 분광광도계를 이용하여 흡광도를 측정하였고, 각 농도별 시간에 따른 영향은 발광량 변화와 유사하였다. 용존 이산화탄소 농도 변화와 발광미생물의 발광량 및 세포밀도 사이에는 유의한 농도-반응 관계가 있으며, 다만 상대적으로 짧은 시간에 발생하는 저해영향으로 배양이 지속됨에 따라 뚜렷하게 회복하는 특성을 보여 증가된 농도의 이산화탄소 영향이 항상 일정하지 않음을 보여주었다. 본 연구는 해양미생울 개체군 성장에 미치는 이산화탄소의 영향을 평가한 것으로 향후 해수의 용존 이산화탄소 농도 증가가 미치는 다양한 해양생물에 대한 영향 및 위해성 예측과 평가에 활용될 수 있을 것으로 기대한다. 또한 해양미생물에 대한 생태영향평가 결과는 이산화탄소 저감을 위해 추진되고 있는 해양 지중저장사업의 환경위해성평가에도 활용될 수 있을 것이다.

Keywords

References

  1. 이규태, 2002. 마이크로톡스 생물검정법의 실험방법 개량과 현장적용에 관한 연구. 서울대학교 대학원 박사학위논문.
  2. 이정석, 이규태, 김찬국, 박건호, 이종현, 박영규, 강성길, 2006. 해수 중 용존 $CO_2$ 농도 증가가 해양생물 및 해양생태계에 미치는 국내외 연구사례. 해양환경공학회지, 9(4): 243-252.
  3. Auerbach, D.I., J.A. Caulfield, E.E. Adams and H.J. Herzog, 1997. Impacts of ocean $CO_2$ disposal on marine life: A toxicological assessment integrating constant-concentration laboratory assay data with variable-concentration field exposure. Environ. Modeling assessment, 2: 333-343. https://doi.org/10.1023/A:1019029931755
  4. Benson, H.J., Microbiological application, 6th ed., 1994, 87 pp.
  5. Brewer, P.G., G. Frienderich, E.T. Peltzer and F. Orr, 1999. Direct experiments on the ocean disposal of fossil fuel $CO_2$ Science, 284: 943-945. https://doi.org/10.1126/science.284.5416.943
  6. Caldeira, K., R. Berner, E.T. Sundquist, P.N. Pearson, and M.R. Palmer, 1999. Seawater pH and atmospheric carbon dioxide. Science, 286: 2043. https://doi.org/10.1126/science.286.5447.2043a
  7. Caldeira, K. and M.E. Wickett, 2003. Anthropogenic carbon and ocean pH. Nature, 425: 365. https://doi.org/10.1038/425365a
  8. Cappuccino, J.G. and N. Sherman, 1992. Microbiology-a laboratory manual, 3rd ed., 117 pp.
  9. Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Keleypas, V.J. Fabry, and F.J. Millero, 2004. Impact of anthropogenic $CO_2$ on the $CaCO_3$ system in the oceans. Science, 305: 362-366. https://doi.org/10.1126/science.1097329
  10. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G.M.S. Raga, and R. Van Dorland, 2007. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. edited by S. Solomon et al., Cambridge University Press, Cambridge, U.K.
  11. Gattuso, J.P. and R.W. Buddemeier, 2000. Calcification and $CO_2$. Science, 407: 311-312.
  12. Childress, J.J. and C.R. Fisher, 1992. The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanography and Marine Biology. Annual Review, 30: 337-441.
  13. Hsieh, C.Y., M.H. Tsai, D.K. Ryan and O.C. Pancorbo, 2004. Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox chronic toxicity test. Sci. Tot. Environ., 320: 37-50. https://doi.org/10.1016/S0048-9697(03)00451-0
  14. IPCC, 2001. Climate Change 2001: Scientific Basis. Cambridge University Press, Cambridge, U.K, 994 pp.
  15. ISO, 2007. Water quality - Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test), Part 3: Method using freeze-dried bacteria, ISO 11348-3.
  16. Kita, L. and T. Ohsumi, 2004. Perspectives on biological research for $CO_2$ ocean sequestration. J. Oceanogr., 60: 695-703. https://doi.org/10.1007/s10872-004-5762-1
  17. Knutzen, J., 1981. Effects of decreased pH on marine organisms. Mar. Pollut. Bull., 12: 25-29. https://doi.org/10.1016/0025-326X(81)90136-3
  18. Kurihara, H. and Y. Shirayama, 2004. Effect of increased atmospheric $CO_2$ on sea urchin early development. Mar. Ecol. Res. Ser., 274: 161-169. https://doi.org/10.3354/meps274161
  19. Orr, J.C., W.J. Fabry and O.A. Aumont, 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Science, 437: 681-686.
  20. Pearson, R.N. and M.R. Palmer, 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Science, 406: 695-699.
  21. Prtner, H.O., M. Langenbuch and A. Reipschlager, 2004. Biological impact of elevated ocean concentrations: lessons from animal physiology and earth history. J. Oceanography, 60: 705-718. https://doi.org/10.1007/s10872-004-5763-0
  22. Prtner, H.O., 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Mar. Ecol. Prog. Ser., 373: 203-217. https://doi.org/10.3354/meps07768
  23. Riebesell, U., I. Zondervan, B. Rost, P.D. Tortell, R.E. Zeebe and F.M.M. Morel, 2000. Reduced calcification of marine plankton in response to increased atmospheric $CO_2$. Nature, 407: 364-367. https://doi.org/10.1038/35030078
  24. Sabine, C.L., R.A. Feely and N. Gruber, 2004. The oceanic sink for anthropogenic $CO_2$, Science, 305: 367-371. https://doi.org/10.1126/science.1097403
  25. Seibel, B.A. and P.J. Walsh, 2001. Potential impacts of $CO_2$ injection on deep-sea biota. Science, 294: 319-320. https://doi.org/10.1126/science.1065301
  26. Takeuchi, K., Y. Fujioka, Y. Kawasaki and Y. Shirayama, 1997. Impacts of high concentration of $CO_2$ on marine organisms; acidification of $CO_2$ ocean sequestration, Energy Convers. Mgmt., 38: Suppl., S337-S341. https://doi.org/10.1016/S0196-8904(96)00291-9
  27. U.S. EPA., 1999. Trimmed Spearman-Karber estimation of LC50 Values Users' Manual, U. S. EPA, Office of Research and Development, National Exposure Research Laboratory-Ecosystems Research Division, Center for Exposure Assessment Modeling (CEAM), Athens, Georgia.