• Title/Summary/Keyword: carbohydrate active enzyme

Search Result 30, Processing Time 0.017 seconds

Genome-Wide Comparison of Carbohydrate-Active Enzymes (CAZymes) Repertoire of Flammulina ononidis

  • Park, Young-Jin;Kong, Won-Sik
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.349-360
    • /
    • 2018
  • Whole-genome sequencing of Flammulina ononidis, a wood-rotting basidiomycete, was performed to identify genes associated with carbohydrate-active enzymes (CAZymes). A total of 12,586 gene structures with an average length of 2009 bp were predicted by the AUGUSTUS tool from a total 35,524,258 bp length of de novo genome assembly (49.76% GC). Orthologous analysis with other fungal species revealed that 7051 groups contained at least one F. ononidis gene. In addition, 11,252 (89.5%) of 12,586 genes for F. ononidis proteins had orthologs among the Dikarya, and F. ononidis contained 8 species-specific genes, of which 5 genes were paralogous. CAZyme prediction revealed 524 CAZyme genes, including 228 for glycoside hydrolases, 21 for polysaccharide lyases, 87 for glycosyltransferases, 61 for carbohydrate esterases, 87 with auxiliary activities, and 40 for carbohydrate-binding modules in the F. ononidis genome. This genome information including CAZyme repertoire will be useful to understand lignocellulolytic machinery of this white rot fungus F. ononidis.

Genome Sequencing and Genome-Wide Identification of Carbohydrate-Active Enzymes (CAZymes) in the White Rot Fungus Flammulina fennae

  • Lee, Chang-Soo;Kong, Won-Sik;Park, Young-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.300-312
    • /
    • 2018
  • Whole-genome sequencing of the wood-rotting fungus, Flammulina fennae, was carried out to identify carbohydrate-active enzymes (CAZymes). De novo genome assembly (31 kmer) of short reads by next-generation sequencing revealed a total genome length of 32,423,623 base pairs (39% GC). A total of 11,591 gene models in the assembled genome sequence of F. fennae were predicted by ab initio gene prediction using the AUGUSTUS tool. In a genome-wide comparison, 6,715 orthologous groups shared at least one gene with F. fennae and 10,667 (92%) of 11,591 genes for F. fennae proteins had orthologs among the Dikarya. Additionally, F. fennae contained 23 species-specific genes, of which 16 were paralogous. CAZyme identification and annotation revealed 513 CAZymes, including 82 auxiliary activities, 220 glycoside hydrolases, 85 glycosyltransferases, 20 polysaccharide lyases, 57 carbohydrate esterases, and 45 carbohydrate binding-modules in the F. fennae genome. The genome information of F. fennae increases the understanding of this basidiomycete fungus. CAZyme gene information will be useful for detailed studies of lignocellulosic biomass degradation for biotechnological and industrial applications.

Physical and catalytic properties of CMCase encoded by Bacillus subtilis gene in B. megaterium

  • Kim, Hoon;Kim, Ha-Geun;Park, Moo-Young
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.524.3-524
    • /
    • 1986
  • Carboxymethyl cellulase (CMCase) produced by cloned B. megaterium was found to contain 5.2% carbohydrate but no metal ion. The enzyme was isoelectric at pH 7.23 and was high is basic amino acids. The N-terminal of the enzyme was glutamic acid. The cellulolytic activity of this enzyme was extended to the small molecular substrates such as from cellotriose to cellopentaose. In additon, the enzyme showed transglycoslation activity. The pK values of the enzyme we estimated to be 4.4 and 6.7, andthat of the enzyme-substrate complex were 4.2 and 7.2, respectively. The enzyme was not affected by the treatment with iodoacetic acid, but the modification of enzyme with carbodiimide and diethyl pyrocarbonate resulted in a marked loss of the enzyme activity. These results suggest that the active site of enzyme essentially contains carboxylic and imidazole group of amino acid residues.

  • PDF

Treatment of ramie leaf β-amylase for preliminary purification

  • Dang, Nguyen Dang Hai;Lee, Jin-Sil
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.542-547
    • /
    • 2016
  • The thermal properties of ramie leaf ${\beta}$-amylase (RBA) were examined to develop a novel process for enzyme purification. The thermostability of RBA extract prepared from ramie leaf powder was examined at various temperatures. RBA activity decreased slightly, whereas other carbohydrate-active enzymes, such as $\small{D}$-enzyme, were rapidly inactivated during 30 min incubation at $60^{\circ}C$. When the heat-treated extract was incubated with various substrates, maltose was produced exclusively as the major product, whereas the untreated crude extract produced maltose and other maltooligosaccharides. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, fewer protein bands were observed for the heat-treated extract than the untreated extract, indicating that the thermostable RBA was partially purified and other thermolabile enzymes were eliminated. Thus, the treatment of the RBA extract at $60^{\circ}C$ for 30 min resulted in 5.4-fold purification with a recovery yield of 90%.

Crystal Structure of a Maltogenic Amylase: Insights into a Catalytic Versatility

  • Oh, Sang-Taek;Cha, Sun-Shin;Kim, Hyun-Ju;Kim, Tae-Jip;Cho, Hyun-Soo;Park, Kwan-Hwa;Oh, Byung-Ha
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.35-35
    • /
    • 1999
  • Amylases catalyze the hydrolysis of starch material and play central roles in carbohydrate metabolism. The structure and a size exclusion column chromatography proved that the enzyme is a dimer in solution. The N -terminal segment of the enzyme folds into a distinct domain and comprises the enzyme active site together with the central (${\alpha}$/ ${\beta}$)$\sub$8/ barrel of the adjacent subunit.(omitted)

  • PDF

Biochemical Changes during Embryonic Diapause in Domestic Silkworm, Bombyx mori L. (Lepidoptera: Bombycidae)

  • Singh, Tribhuwan;Saratchandra, Beera
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Ecophysiologically diapause represents a syndrome of physiological and biochemical characteristics, all of which ensure survival during a long period of dormancy. Since, silkworm enters diapause as embryo at the early embryonic stage, the duration of egg life depends on the duration of embryonic diapause. The nature of diapause in silkworm, Bombyx mori, is primarily determined by genetic characters and endocrinologicnl mechanisms, mediated by environmental factors such as temperature and photoperiod. Hibernating potency value besides nucleic acid and carbohydrate metabolism, production and utilization of sorbitol are also equally responsible for induction, initiation, determination, maintenance and termination of diapause. Embryonic diapause in Bombyx moir, induced by active secretion of sub-oesophageal ganglion is attributed to hormonal system and metabolic adjustment, which serves to bring about a new physiological state. Metabolic conversion of trehalose to glycogen at induction, glycogen to sorbitol at initiation and sorbitol to glycogen at termination of diapause is correlated and in each metabolic shift a key enzyme becomes active in response to hormonal and environmental stimulation. An attempt has been made in this review article to discuss briefly the nature of embryonic diapause, influence of various factors on diapause nature, hormonal mechanism of diapause besides biochemical composition of egg, nucleic acid and carbohydrate metabolism, production and utilization of sorbitol in relation to induction, determination, maintenance, initiation and termination of diapause in the silkworm, Bombyx mori.

Increase of Bioactive Flavonoid Aglycone Extractable from Korean Citrus Peel by Carbohydrate-Hydrol-ysing Enzymes (당 분해효소를 이용한 감귤 Flavonoid 무배당체 함량의 증가)

  • Ahn Soon-Cheol;Kim Min-Soo;Lee Sun-Hi;Kang Ju-Hyung;Kim Bo-Hye;Oh Won-Keun;Kim Bo-Yeon;Ahn Jong-Seog
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.288-294
    • /
    • 2005
  • Flavonoid compounds show several biological activities and generally exist in the forms of glycones linking sugar moiety to main structure. Flavonoid glycones such as naringin and hesperidin in korean citrus peel are slower absorbed and consequently less active than their aglycone, naringenin and hesperetin, respectively. Therefare to increase the content of flavonoid aglycone in korean citrus peel, we used commercial carbohydrate-hydrolysing enzymes, AMG 300 L, Pectinex 100 L, and Viscozyme for transforming flavonoid glycones to aglycones. Optimal conditions of enzyme reaction were pH 5.0-7.0, $5\%$ enzyme, and 24-48 hrs. The content of naringenin and hesperetin as flavonoid aglycones in untreated citrus peel is $100\~200\;ng/g$ of dried citrus peel. In case of enzyme-treated citrus peel the content of naringenin and hesperetin increased to $1,539\∼6,674\;ng/g\;and\;1,974\∼8,906\;ng/g$ of dried citrus peel, respectively. Finally the content of flavonoid aglycones could be extracted to 10-80 times. Now enzyme-treated citrus peel may be applied to use for functional food because of its higher flavonoid aglycones as more active compounds.

Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by Lactococcus lactis

  • Lu, Chuanchuan;Liu, Yanfeng;Li, Jianghua;Liu, Long;Du, Guocheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.154-162
    • /
    • 2021
  • L-5-methyltetrahydrofolate (5-MTHF) is one of the biological active forms of folate, which is widely used as a nutraceutical. However, low yield and serious pollution associated with the chemical synthesis of 5-MTHF hampers its sustainable supply. In this study, 5-MTHF production was improved by engineering the 5-MTHF biosynthesis pathway and NADPH supply in Lactococcus lactis for developing a green and sustainable biosynthesis approach. Specifically, overexpressing the key rate-limiting enzyme methylenetetrahydrofolate reductase led to intracellular 5-MTHF accumulation, reaching 18 ㎍/l. Next, 5-MTHF synthesis was further enhanced by combinatorial overexpression of 5-MTHF synthesis pathway enzymes with methylenetetrahydrofolate reductase, resulting in 1.7-fold enhancement. The folate supply pathway was strengthened by expressing folE encoding GTP cyclohydrolase I, which increased 5-MTHF production 2.4-fold to 72 ㎍/l. Furthermore, glucose-6-phosphate dehydrogenase was overexpressed to improve the redox cofactor NADPH supply for 5-MTHF biosynthesis, which led to a 60% increase in intracellular NADPH and a 35% increase in 5-MTHF production (97 ㎍/l). To reduce formation of the by-product 5-formyltetrahydrofolate, overexpression of 5-formyltetrahydrofolate cyclo-ligase converted 5-formyltetrahydrofolate to 5,10-methyltetrahydrofolate, which enhanced the 5-MTHF titer to 132 ㎍/l. Finally, combinatorial addition of folate precursors to the fermentation medium boosted 5-MTHF production, reaching 300 ㎍/l. To the best of our knowledge, this titer is the highest achieved by L. lactis. This study lays the foundation for further engineering of L. lactis for efficient 5-MTHF biosynthesis.

Enzyme-assisted extraction of Ecklonia cava fermented with Lactobacillus brevis and isolation of an anti-inflammatory polysaccharide

  • Lee, Won-Woo;Ahn, Ginnae;Wijesinghe, W.A.J.P.;Yang, Xiudong;Ko, Chang-Ik;Kang, Min-Cheol;Lee, Bae-Jin;Jeon, You-Jin
    • ALGAE
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2011
  • Fermentation and enzyme-assisted extraction (EAE) improve nutritional and functional properties of foods by increasing the extraction of active compounds, ingestion rates, and body absorption. In this study, we investigated whether applying the EAE process improves the extraction and isolation efficiency of a polysaccharide from fermented Ecklonia cava (FE), which inhibited NO production in lipopolysaccharide (LPS)-activated RAW 264.7 cells. The results showed that the FE using the fungi Candida utilis and two different bacteria, namely Lactobacillus brevis and Saccharomyces cerevisiae increased protein and carbohydrate contents in comparison with those in non-fermented E. cava (NE). Aqueous extracts of fermented E. cava increased extraction yields and carbohydrate content, compared with the aqueous extract of NE. In addition, treating LPS-stimulated RAW 264.7 cells with aqueous extracts resulted in reduced NO production compared to that in LPS-treated cells. Ten EAEs of L. brevis-fermented E. cava (LFE) improved NO inhibitory effects in LPS-activated RAW 264.7 cells and the Viscozyme extract (VLFE) from the resulting extracts showed the highest NO inhibitory effect. We found that the >30 kDa fraction of VLFE led to markedly high inhibition of LPS-induced NO production as compared to that in the <30 kDa fraction. The crude polysaccharide isolated from >30 kDa fraction (VLFEP) consisted of fucose and markedly decreased NO production induced by LPS stimulation. VLFEP could be useful as an anti-inflammatory agent to suppress macrophage activation.

Crystal Structure of Hypothetical Fructose-Specific EIIB from Escherichia coli

  • Park, Jimin;Kim, Mi-Sun;Joo, Keehyung;Jhon, Gil-Ja;Berry, Edward A.;Lee, Jooyoung;Shin, Dong Hae
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.495-500
    • /
    • 2016
  • We have solved the crystal structure of a predicted fructose-specific enzyme $IIB^{fruc}$ from Escherichia coli ($EcEIIB^{fruc}$) involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system transferring carbohydrates across the cytoplasmic membrane. $EcEIIB^{fruc}$ belongs to a sequence family with more than 5,000 sequence homologues with 25-99% amino-acid sequence identity. It reveals a conventional Rossmann-like ${\alpha}-{\beta}-{\alpha}$ sandwich fold with a unique ${\beta}$-sheet topology. Its C-terminus is longer than its closest relatives and forms an additional ${\beta}$-strand whereas the shorter C-terminus is random coil in the relatives. Interestingly, its core structure is similar to that of enzyme $IIB^{cellobiose}$ from E. coli ($EcIIB^{cel}$) transferring a phosphate moiety. In the active site of the closest $EcEIIB^{fruc}$ homologues, a unique motif CXXGXAHT comprising a P-loop like architecture including a histidine residue is found. The conserved cysteine on this loop may be deprotonated to act as a nucleophile similar to that of $EcIIB^{cel}$. The conserved histidine residue is presumed to bind the negatively charged phosphate. Therefore, we propose that the catalytic mechanism of $EcEIIB^{fruc}$ is similar to that of $EcIIB^{cel}$ transferring phosphoryl moiety to a specific carbohydrate.