DOI QR코드

DOI QR Code

Crystal Structure of Hypothetical Fructose-Specific EIIB from Escherichia coli

  • Park, Jimin (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Kim, Mi-Sun (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Joo, Keehyung (Center for insilico Protein Science and School of Computational Sciences, Korea Institute for Advanced Study) ;
  • Jhon, Gil-Ja (Department of Chemistry and Nano Science, Global Top5 Research Program, Ewha Womans University) ;
  • Berry, Edward A. (Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University) ;
  • Lee, Jooyoung (Center for insilico Protein Science and School of Computational Sciences, Korea Institute for Advanced Study) ;
  • Shin, Dong Hae (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University)
  • Received : 2016.02.29
  • Accepted : 2016.04.27
  • Published : 2016.06.30

Abstract

We have solved the crystal structure of a predicted fructose-specific enzyme $IIB^{fruc}$ from Escherichia coli ($EcEIIB^{fruc}$) involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system transferring carbohydrates across the cytoplasmic membrane. $EcEIIB^{fruc}$ belongs to a sequence family with more than 5,000 sequence homologues with 25-99% amino-acid sequence identity. It reveals a conventional Rossmann-like ${\alpha}-{\beta}-{\alpha}$ sandwich fold with a unique ${\beta}$-sheet topology. Its C-terminus is longer than its closest relatives and forms an additional ${\beta}$-strand whereas the shorter C-terminus is random coil in the relatives. Interestingly, its core structure is similar to that of enzyme $IIB^{cellobiose}$ from E. coli ($EcIIB^{cel}$) transferring a phosphate moiety. In the active site of the closest $EcEIIB^{fruc}$ homologues, a unique motif CXXGXAHT comprising a P-loop like architecture including a histidine residue is found. The conserved cysteine on this loop may be deprotonated to act as a nucleophile similar to that of $EcIIB^{cel}$. The conserved histidine residue is presumed to bind the negatively charged phosphate. Therefore, we propose that the catalytic mechanism of $EcEIIB^{fruc}$ is similar to that of $EcIIB^{cel}$ transferring phosphoryl moiety to a specific carbohydrate.

Keywords

References

  1. Ab, E., Schuurman-Wolters, G., Reizer, J., Saier, M.H., Dijkstra, K., Scheek, R.M., and Robillard G.T. (1997) The NMR side-chain assignments and solution structure of enzyme IIB of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Protein Sci. 6, 304-314.
  2. Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect D: Biol. Crystallogr. 66, 213-221. https://doi.org/10.1107/S0907444909052925
  3. Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M., Terwilliger, T.C., Urzhumtsev, A., Zwart, P.H., and Adams, P.D. (2012). Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect D: Biol. Crystallogr. 68, 352-367.
  4. Barabote, R.D., and Saier, M.H., Jr. (2005). Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol. Mol. Biol. Rev. 69, 608-634. https://doi.org/10.1128/MMBR.69.4.608-634.2005
  5. Buchan, D.W., Minneci, F., Nugent, T.C., Bryson, K., and Jones, D.T. (2013). Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 41, W349-357. https://doi.org/10.1093/nar/gkt381
  6. Deutscher, J., Ake, F.M., Derkaoui, M., Zebre, A.C., Cao, T.N., Bouraoui, H., Kentache, T., Mokhtari, A., Milohanic, E., and Joyet, P. (2014). The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol. Mol. Biol. Rev. 78, 231-256. https://doi.org/10.1128/MMBR.00001-14
  7. Holm, L., and Rosenstrom, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545-549. https://doi.org/10.1093/nar/gkq366
  8. Joo, K., Kim, M.-S., Park, J., Lee, J., and Shin, D.H. (2015). Highaccuracy protein structure modeling and its application to molecular replacement of crystallographic phasing. Biodesign. 3, 123-130.
  9. Lei, J., Li, L.F., and Su, X.D. (2009). Crystal structures of phosphotransferase system enzymes PtxB (IIB(Asc)) and PtxA (IIA(Asc)) from Streptococcus mutans. J. Mol. Biol. 386, 465-475. https://doi.org/10.1016/j.jmb.2008.12.046
  10. Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., et al. (2015). CDD: NCBI's conserved domain database. Nucleic acids Res. 43, D222-226. https://doi.org/10.1093/nar/gku1221
  11. Oganesyan, N., Kim, S.-H., and Kim, R. (2005). On-column protein refolding for crystallization. J. Struct. Funct. Genomics 6, 177-182. https://doi.org/10.1007/s10969-005-2827-3
  12. Saier, M.H., Jr., and Reizer, J. (1994). The bacterial phosphotransferase system: new frontiers 30 years later. Mol. Microbiol. 13, 755-764. https://doi.org/10.1111/j.1365-2958.1994.tb00468.x
  13. Sankhala, R.S., Lokareddy, R.K., and Cingolani, G. (2014). Structure of human PIR1, an atypical dual-specificity phosphatase. Biochemistry 53, 862-871. https://doi.org/10.1021/bi401240x
  14. Schauder, S., Nunn, R.S., Lanz, R., Erni, B., and Schirmer, T. (1998). Crystal structure of the IIB subunit of a fructose permease (IIBLev) from Bacillus subtilis. J. Mol. Biol. 276, 591-602. https://doi.org/10.1006/jmbi.1997.1544
  15. Shin, D.H. (2008). A preliminary X-ray study of a refolded PTS EIIBfruc protein from Escherichia coli. Protein Pept. Lett. 15, 630-632. https://doi.org/10.2174/092986608784967001
  16. Su, X.D., Taddei, N., Stefani, M., Ramponi, G., and Nordlund, P. (1994). The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase. Nature 370, 575-578. https://doi.org/10.1038/370575a0
  17. Tadwal, V.S., Sundararaman, L., Manimekalai, M.S., Hunke, C., and Gruber, G. (2012). Relevance of the conserved histidine and asparagine residues in the phosphate-binding loop of the nucleotide binding subunit B of A(1)A(0) ATP synthases. J. Struct. Biol. 180, 509-518. https://doi.org/10.1016/j.jsb.2012.10.001
  18. van Montfort, R.L., Pijning, T., Kalk, K.H., Reizer, J., Saier, M.H., Jr., Thunnissen, M.M., Robillard, G.T., and Dijkstra, B.W. (1997). The structure of an energy-coupling protein from bacteria, IIBcellobiose, reveals similarity to eukaryotic protein tyrosine phosphatases. Structure 5, 217-225. https://doi.org/10.1016/S0969-2126(97)00180-9
  19. Waterhouse, A.M., Procter, J. B., Martin, D.M., Clamp, M., and Barton, G.J. (2009). Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191. https://doi.org/10.1093/bioinformatics/btp033

Cited by

  1. Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system vol.14, pp.11, 2016, https://doi.org/10.1371/journal.pone.0219332