• Title/Summary/Keyword: capsid protein

Search Result 121, Processing Time 0.029 seconds

Use of G gene-deleted single-cycle viral hemorrhagic septicemia virus (VHSV) for delivery of nervous necrosis virus (NNV)-like particles

  • Yang, Jeong In;Kim, Min Sun;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.177-184
    • /
    • 2021
  • Vaccines based on single-cycle viruses that are replication-incompetent due to knockout of replication-related structural gene(s) are more immunogenic than inactivated or subunit vaccines and can be used as delivery vehicles for foreign antigens without concerns on the reverting to virulent forms. The aim of this study was to develop a delivery vehicle for nervous necrosis virus (NNV)-like particles (VLPs) using G gene deleted single-cycle VHSV (rVHSV-𝚫G). Recombinant single-cycle VHSVs carrying NNV capsid protein gene between N and P gene of rVHSV-𝚫G genome (rVHSV-𝚫G-NNVCap) were rescued by reverse genetic technology. The successful expression of NNV capsid protein in cells infected with rVHSV-𝚫G-NNVCap was demonstrated by Western blot analysis, and the production of NNV VLPs in infected cells was confirmed using an electron microscopy. The results suggest that single-cycle VHSVs can be used as a safe delivery vehicle for NNV VLPs, and can be extended to other pathogens for the development of prophylactic vaccines.

An Electron Microscopic Structure of Rotavirus by Negative Stain (Negative stain을 이용한 Rotavirus의 투과전자현미경적 구조)

  • Kwon, Jung-Kyun
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.107-114
    • /
    • 1994
  • The Rotaviruses are members of the family Reoviridae and are the major cause of severe childhood gastroenteritis worldwide. Recently, electron microscopy has been used to detect non-group A rotaviruses to determine a relatively high resolution structure of the rotavirion. Mature, infectious virions(double-shelled particles) have a diameter of approximately 70nm, and have a capsid structure composed of two concentric protein layers. We have studied patient's stool specimen by negative staining technique complete removal of sucrose suspension. This negative staining technique that could be carried out in about 30 minutes and that could be used with crude stool specimen was an advantage of major significance. Removal of sucrose in the sample by has been completed washing with distilled of sucrose and by washing with distilled water. Ultrastructurally, typical feature of rotavirus has a double capsid construction with an inner capsid of 55nm and on outer 65-70nm diameter can be clearly demonstrated.

  • PDF

Cloning of Major Capsid Protein Gene of Pseudorabies Virus and Expression by Baculovirus Vector System (Pseudorabies Virus의 Major Capsid Protein 유전자의 클론닝과 Baculovirus Vector System에 의한 발현)

  • An, Dong-Jun;Jun, Moo-Hyung;Song, Jae-Young;Park, Jong-Hyeon;Hyun, Bang-Hun;Chang, Kyung-Soo;An, Soo-Hwan
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.151-162
    • /
    • 1996
  • Pseudorabies is caused by Pseudorabies virus (PRV: Aujeszky's disease virus) of Herpesviridae that is characterized by 100 to 150nm in size with a linear double-stranded DNA molecule with of approximately $90{\times}10^6Da$. This disease affects most of domestic animals such as swine, cattle, dog, sheep, cat, chicken, etc. causing high mortality and economic losses. In swine, young piglets show high mortality and pregnant sows, reproductive failures. However the adult swine reveals no clinical signs in general. But they become a carrier state and play an important role for propagation of the disease. In this study, the nucleotide sequence of major casid protein gene of PRV, Yangsan strain isolated from the diseased swine in Korea was analyzed, and the recombinant MCP was produced by expression of the MCP gene in Sf-9 cell using baculovirus transfer vector system. As result, in BamHI digestion, MCP gene locus of PRV YS strain showed different from that of Indiana S strain. The patterns of enzyme mapping were also found to be unidentical each other. The sequence of the MCP gene partially analyzed showed 98.09% identity to Indiana S strain. The expression of MCP in Sf-9 cell cotransfected by pVLMCP-44 baculovirus expression vector was characterized by Southern blot hybridization, immunofluoresent and immunocytochemical tests, SDS-PAGE and Western blotting. The rMCP with M.W. 142kDa was most effectively expressed in Sf-9 cells at the 3-4th days post inoculation of the recombinant baculovirus by 2 moi.

  • PDF

Pathogenesis, Dianosis, and Prophylactic Vaccine Development for Foot-and-Mouth Disease (구제역의 병리기전 및 진단, 예방백신 개발)

  • Moon, Sun-Hwa;Yang, Joo-Sung
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.301-310
    • /
    • 2005
  • Foot-and-mouth disease (FMD) is a highly contagious disease of mammals and has a great potential for causing severe economic loss in susceptible cloven-hoofed animals, such as cattle, pigs, sheep, goats and buffalo. FMDV, a member of the Aphthovirus genus in the Picornaviridae family, is a non-enveloped icosahedral virus that contains a positive sense RNA of about 8.2 kb in size. The genome carries one open reading frame consisting of 3 regions: capsid protein coding region P1, replication related protein coding region P2, and RNA-dependent RNA polymerase coding region P3. FMDV infects pharynx epithelial cell in the respiratory tract and viral replication is active in lung epithelial cell. Morbidity is extremely high. A FMD outbreak in Korea in 2002 caused severe economic loss. Although intense research is undergoing to develop appropriate drugs to treat FMDV infection, there is no specific therapeutic for controlling FMDV infection. Moreover, there is an increasing demand for the development of vaccine strategies against FMDV infection in many countries. In this report, more effective prevention strategies against FMDV infection were reviewed.

Expression of Rotavirus Capsid Proteins VP6 and VP7 in Mammalian Cells Using Semliki Forest Virus-Based Expression System

  • Choi, Eun-Ah;Kim, Eun;Oh, Yoon-I;Shin, Kwang-Soon;Kim, Hyun-Soo;Kim, Chul-Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • Rotaviruses are the world-wide leading causative agents of severe dehydrating gastroenteritis in young children and animals. The outer capsid glycoprotein VP7 and inner capsid glycoprotein VP6 of rotaviruses are highly antigenic and immunogenic. An SFV-based expression system has recently emerged as a useful tool for heterologous protein production in mammalian cells, exhibiting a much more efficient performance compared to other gene expression systems. Accordingly, the current study adopted an SFV-based expression system to express the VP7 of a group A human rotavirus from a Korean isolate, and the VP6 of a group B bovine rotavirus from a Korean isolate, in mammalian cells. The genes of the VP6 and VP7 were inserted into the SFV expression vector pSFV-1. The RNA was transcribed in vitro from pSFV-VP6 and pSFV-VP7 using SP6 polymerase. Each RNA was then electroporated into BHK-21 cells along with pSFV-helper RNA containing the structural protein gene without the packaging signal. The expression of VP6 and VP7 in the cytoplasm was then detected by immunocytochemistry. The recombinant virus was harvested by ultracentrifugation and examined under electron microscopy. After infecting BHK-21 cells with the defective viruses, the expressed proteins were separated by SDS-PAGE and analyzed by a Western blot. The results indicate that an SFV-based expression system fur the VP6 and VP7 of rotaviruses is an efficient tool for developing a diagnostic kit and/or preventive vaccine.

Production of Recombinant Rotavirus Capsid Protein VP7 from Stably Transformed Drosophila melanogaster S2 Cells

  • Park, Jong-Hwa;Chang, Kyung-Hwa;Lee, Youn-Hyung;Kim, Hae-Yeong;Yang, Jai-Myung;Chung, In-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.563-568
    • /
    • 2002
  • Stably transformed Drosophila melanogaster 52 cells producing recombinant VP7 were obtained, and recombinant VP7 expression was confirmed by Western blot analysis. The molecular weight of recombinant VP7 expressed in 52 cells was approximately 35.5 kDa, and 75% of the total VP7 produced was present in the medium. Recombinant VP7 contained N-linked glycosylated oligosaccharides. Aprotinin, leupeptin, and polyvinylpyrrolidone did not have any noticeable effect on recombinant VP7 production; however, DMSO and sodium butyrate increased its production by 120% and 60%, respectively.

The serodiagnosis of a lymphocystis disease virus infection using an antibody raised against a recombinant major capsid protein

  • Seo, Ja-Young;Kang, Bong-Jo;Oh, Hyoung-Jong;Lee, Jae-Il;Kim, Tae-Jung
    • Journal of fish pathology
    • /
    • v.21 no.3
    • /
    • pp.175-180
    • /
    • 2008
  • Lymphocystis is a viral disease of fish primarily in marine and brackishwaters. Here we report the cloning, expression, and the serological applications of the lymphocystis disease virus (LCDV) major capsid protein (MCP). The MCP gene was amplified by PCR from the genomic DNA of LCDV isolated from Schlegel's black rockfish, Sebastes schlegeli, and expressed in E. coli. Mouse antisera raised against the purified recombinant MCP (rMCP) reacted with the viral MCP in an immunofluorescence assay, indicating that this rMCP would be useful for serological studies of field samples.

Comparison of detective ranavirus with major capsid protein gene from infected frogs (Pelophylax nigromaculatus and Lithobates catesbeianus) in South Korea

  • Jongsun, Kim;Nam-Ho, Roh;Jaejin, Park;Daesik, Park
    • Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.276-281
    • /
    • 2022
  • Ranaviruses are a primary cause of amphibian extinctions. More consistent ranavirus-infection reports and genetic characterizations of identified viruses are urgently needed, particularly from Asian countries. The objectives of this study were to obtain the partial major capsid protein (MCP) gene sequences (506 bp) of the ranavirus responsible for infecting frogs in South Korea, as our previous research had confirmed using qPCR, and to evaluate their genetic relationships with other previously reported ranavirus sequences. Three different ranavirus MCP sequences were obtained from Pelophylax nigromaculatus and Lithobates catesbeianus. All six different types of MCP sequence from the ranavirus identified in South Korea to date belonged to the Frog virus 3 (FV3)-like virus group in the genus Ranavirus. To better understand the origin and spread of ranaviruses in South Korea, further infection reports and full genome analyses of the identified ranaviruses are needed.

The Inactivation Effects of UV Light on Bacteriophage f2 (박테리오파지 f2에 대한 자외광선의 살균효과)

  • Kim, Chi-Kyung;Quae Chae
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.155-161
    • /
    • 1983
  • The effects of ultraviolet light on bacteriophage f2 were investigated to determine the inactivation kinetics and its mechanism. The 260nm light showed a little higher inactivation rate than the one of 300 nm. In this work, our main concern was whether structural and/or conformational changes in the protein capsid could occur by UV irradiation. The inactivation for the first 20 minutes irradiation was rapid with a loss of about 4 logs and followed by a slower rate during the next 40 minutes with no survival noted in the samples irradiated for 90 minutes or longer. The structural change of the protein capsid was examined by optical spectroscopic techniques and electron microscopy. The absorption spectra of the UV irradiated phages showed no detectable differences in terms of the spectral shape and intensity from the control phage. However, the fluorescence emission spectroscopic data, i.e. 1) fluorescence quenching of tryptophan residues upon irradiation of 300 nm light, 2) enhancement of fluorescence emission of ANS (8-aniline-1-naphthalene sulfonate) bound to the intact phages compared to the one in the UV-treated phages, and 3) decrease of energy transfer efficiency from tryptophan to ANS in the UV-treated samples, presented remarkable differences between the intact and UV-treated phages. Such a structural alteration was also observed by electron microscopy The UV-treated phages appeared to be broken and empty capsids. Therefore, the inactivation of the bacteriophage f2 by UV irradiation is thought to be attributed to the structural change in the protein capsid as well as damage in the viral RNA by UV irradiation.

  • PDF

Expression and evaluation of porcine circovirus type 2 capsid protein mediated by recombinant adeno-associated virus 8

  • Li, Shuang;Wang, Bo;Jiang, Shun;Lan, Xiaohui;Qiao, Yongbo;Nie, Jiaojiao;Yin, Yuhe;Shi, Yuhua;Kong, Wei;Shan, Yaming
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.8.1-8.11
    • /
    • 2021
  • Background: Porcine circovirus type 2 (PCV2) is an important infectious pathogen implicated in porcine circovirus-associated diseases (PCVAD), which has caused significant economic losses in the pig industry worldwide. Objectives: A suitable viral vector-mediated gene transfer platform for the expression of the capsid protein (Cap) is an attractive strategy. Methods: In the present study, a recombinant adeno-associated virus 8 (rAAV8) vector was constructed to encode Cap (Cap-rAAV) in vitro and in vivo after gene transfer. Results: The obtained results showed that Cap could be expressed in HEK293T cells and BABL/c mice. The results of lymphocytes proliferative, as well as immunoglobulin G (IgG) 2a and interferon-γ showed strong cellular immune responses induced by Cap-rAAV. The enzyme-linked immunosorbent assay titers obtained and the IgG1 and interleukin-4 levels showed that humoral immune responses were also induced by Cap-rAAV. Altogether, these results demonstrated that the rAAV8 vaccine Cap-rAAV can induce strong cellular and humoral immune responses, indicating a potential rAAV8 vaccine against PCV2. Conclusions: The injection of rAAV8 encoding PCV2 Cap genes into muscle tissue can ensure long-term, continuous, and systemic expression.