• Title/Summary/Keyword: capacitive leakage current

Search Result 27, Processing Time 0.02 seconds

Development and Safety Estimation of Resistive Leakage Current(Igr) of Detection Outlet (저항성 누설전류(Igr) 검출 콘센트의 개발 및 안전성 평가)

  • Kim, Chang-Soung;Hanh, Song-Yop;Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.221-226
    • /
    • 2009
  • In this paper, we analyzed form of flowing leakage current in electrical installation. Leakage current ($I_g$) is consisted of resistive leakage current($I_{gr}$), capacitive leakage current($I_{gc}$), and inductive leakage current($I_{gl}$). Resistive leakage current($I_{gr}$) is big occasion than capacitive leakage current($I_{gc}$) in system, Residual Current Protective Device(RCD) detects correctly leakage current. But,$I_{gc}$ is big occasion than $I_{gr}$, RCD is malfunctioned It is resistance to lead to electric fire in electrical device. We manufactured outlet that resistive leakage current detecting circuit is had. Manufactured outlet displayed performance exactly in leakage current of 5 mA Therefore, this product estimates that contribute on electric fire courtesy call.

A New Method for Resistive Leakage Current Measurement (새로운 저항성 누전전류 측정 방법)

  • Ham, Seung-Jin;Hahn, Song-Yop;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1397-1404
    • /
    • 2007
  • It is important to measure the resistive component separately from the total leakage current at power distribution line. It is because electric disasters such as electric shock and fire are caused mainly by the resistive component of the total leakage current. In this paper, a new theory for measuring the resistive component separately from the total leakage current is suggested, and is embodied to an actual circuit using operational amplifiers, analog switch and R-C low pass filter. Through experiments for various cases containing both the resistive and capacitive leakage currents, the suggested algorithm is confirmed to be able to measure the resistive leakage current within 4.1% of error even when the capacitive leakage current is much bigger than the resistive one. The suggested method is expected to lower the total cost because it can be realized using simple and cheap devices, and implies the measuring time can be possibly reduced because the resistive leakage current is computed exactly from the signals during only a half period of power voltage.

Analysis of Resistive and Capacitive Leakage Current according to Wiring Type and Length at Cattle Barn (우사(牛舍)에서 전기배선의 종류와 길이에 따른 저항성 및 용량성 누전전류 분석)

  • Yoo, Sang-Ok;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.34-39
    • /
    • 2014
  • This paper is aimed to prevent danger of electrical fire at cattle barn to detect resistive and capacitive leakage current component for wiring type and length. In order to analysis for electric leakage component for cattle barn sizes and normal buildings, this paper was studied field state investigation which are at cattle barn companies(10 companies) in Cheong-won location and normal buildings at Nam-bu market in Jeon-ju location. Market to deduce the problems of electric leakage component is analyzed. The resistive and capacitive leakage current component for wiring type and length is analyzed at Beon-young cattle barn. Results show that electric leakage component suggested in this paper are valuable and usable to electrical fire in leakage current based on environment factor, which will prevent severe damage to human beings and properties and reduce the electrical fires in cattle barn. It is acceptable for electrical equipment use in an cattle barn.

Study on the Resistivity Leakage Current Detection and Properties Analysis of Electrical Installat ion (전기설비의 저항성 누설전류 검출 및 특성 해석에 관한 연구)

  • Choi, Chung-Seog;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.301-304
    • /
    • 2008
  • In this paper, we study from of flowing leakage current in electrical installation. Leakage current is expressed by a resistivity leakage current($I_{gr}$), a capacitive leakage current($I_{gc}$), an inductivity leakage current($I_{gl}$). General Zero Phase Current Transformer (ZCT) detect a leakage current($I_{g}$) that are conjoined resistivity leakage current and capacitive leakage current. In case $I_{gr}$ is big than $I_{gc}$, there is no singular problem in leakage current detection of system. But, in case $I_{gc}$ is big than $I_{gr}$, earth leakage breaker can not prevent accident effectively. Can lower electric leakage perception current to 5 mA if apply resistivity leakage current detecting circuit. We can achieve prevention of electricity disaster spontaneously.

  • PDF

Development of an Earth Leakage Breaker Operating by Resistive Leakage Current using a Resetable Integrator (적분기를 이용한 저항성 누전전류 작동방식 누전차단기 개발)

  • Ham, Seung-Jin;Hahn, Song-Yop;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.917-918
    • /
    • 2007
  • The former earth leakage breaker is operating by total leakage current which is the vector-sum of resistive leakage current and capacitive leakage current. However, the electric disaster like the electric shock and fire is caused mainly by resistive leakage current. Therefore, the earth leakage breaker is ideal when it is operating by resistive leakage current. In this paper, the theory for finding the component of resistive leakage current from total leakage current is suggested and it is embodied to actual circuit. The resistive leakage current can be found by integrating the total leakage current during half cycle of line voltage. Thus, we can simply find resistive leakage current by using OP-AMP integrators, and we can confirm that the resistive leakage current is computed exactly from total leakage current obtained by resistive leakage current and capacitive leakage current. The results that the earth leakage breaker is operating within regular interrupt time are verified when the former earth leakage breaker's controller circuit is replaced by the proposed controller circuit.

  • PDF

The New Residual Current Protective Devices Operating by Resistive Leakage Current (저항성 누전전류에 의하여 동작하는 새로운 누전차단기)

  • Ham, Seung-Jin;Hahn, Song-Yop;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.198-207
    • /
    • 2008
  • The conventional Residual Current Protective Devices(RCD, or earth leakage circuit breaker, ELB) operates depending on the total leakage current which is the vector-sum of resistive and capacitive components of a leakage current. However, the electric disaster such as electric shock or fire is mainly caused by the resistive component. Therefore, in this view point, the RCD is more realistic when it operates by the resistive component of the leakage current. In this paper, a new algorithm for measuring the resistive leakage current from the total leakage current is suggested, and is realized to an actual circuit. According to the suggested algorithm, the resistive component of the leakage current can be found by integrating the total leakage current over only a half cycle of the line voltage, and it is realized by using analog switches and resettable integrators. It is confirmed through experiments that the suggested algorithm detects, within maximum average error of 6.74%, the resistive leakage current from the total leakage current, and the RCD employing the suggested algorithm brakes the circuit within the regular interrupt time(30msec).

The Implementation of Active Leakage Current Detecting Algorithm based on 16 bit Signal Processor (16비트 신호처리 프로세서 기반 유효성분 누설전류 감지 알고리즘 구현)

  • Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.605-610
    • /
    • 2016
  • The ELCB(: Earth Leakage Circuit Breaker) is the only way being used to prevent accidents from happening caused by electrical disaster. However, the existing ELCB has a limit to prevent damages to life and property due to a electric fire and a human body electric shock caused by the resistive leakage current, because of detecting the total leakage current in the block range of 15mA~30mA. It also has problems such as reduced productivity and reliability due to malfunctions by capacitive leakage currents. In this study, we have implemented the algorithm for the resistive leakage current detection technique and developed the resistive leakage current detection module based on a MSP430 processor, 16bit signal processor and this module can be operated in a desired block threshold within 0.03 seconds as specified in KS C 4613.

Measurement Device of Resistive Leakage Current for Arrester Deterioration Diagnosis (피뢰기 열화진단을 위한 저항분 누설전류의 측정장치)

  • 길경석;한주섭;김정배
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.469-475
    • /
    • 2003
  • Resistive leakage current flowing ZnO blocks increases with its ages, which is an important indicator of arrester deterioration. However, a complicated circuitry is essential to measure the resistive leakage current included in the total leakage current, and the difficult handling of the measurement makes few applications to the fields. In this paper, we propose a resistive leakage current measurement device which is composed of a current detection circuit and an analysis program operated on a microprocessor. The device samples the input leakage current waveform digitally, and discriminate the zero-cross and the peak point of the waveform to analyze the current amplitude vs. phase. The capacitive leakage current is then eliminated from the total leakage current by using an algorithm to extract the resistive leakage current only. Also, the device can be operated automatically and manually to analyze the resistive leakage current even when the leakage current waveform is distorted due to various types of arrester deterioration. To estimate the performance of the device, we carried out a test on ZnO blocks and lightning arresters. From the results, it is confirmed that the device could analyze most parameters needed for the arrester diagnostics such as total leakage current. resistive leakage current, and the $3^rd$ harmonic leakage current.

Development of the Leakage Current Detection Module for a Concent (콘센트용 누전감지 모듈 개발)

  • Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.447-452
    • /
    • 2013
  • In this paper, the leakage current detection and auto shut-off module for a concent has been developed. Existing leakage current detection modules are detecting resistive leakage current, using a resistive leakage current detection chip but the proposed leakage current detection module separates and detects resistive leakage current in the synthesis leakage current by only programming in a power processor MCU(MSP430). The module implemented by proposed method has early detection and auto shut-off feature at more than resistive leakage current 5mA, and has the advantage of easily adjusting resistive leakage current less or more than 5mA, because of resistive leakage current detection function being implemented by a program in MCU.

The Development of Resistive Leakage Current Circuit Breaker using a ARM Processor (ARM 프로세서를 이용한 저항성 누전 차단기 개발)

  • Lee, Hyun-Do
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.615-620
    • /
    • 2017
  • In this study, we have developed the resistive leakage current detecting and tripping circuit breaker based on a 32bit ARM processor. The developed leakage circuit breaker can be operated in a desired trip threshold within 0.03 seconds as specified in KS C 4613. This resistive leakage current breaker is expected to be applicable as a circuit breake for prevention of electric fires and electric shock in smart distribution panel.