• Title/Summary/Keyword: canyon effect

Search Result 15, Processing Time 0.023 seconds

The Effect of the Materials of an Outer Wall and the Paved Street on Human Thermal Comfort in a Housing Complex in Pohang City (포항시의 집합 주거공간에 있어서 외장재 및 도로 구성재료가 인체 온열 쾌적성에 미치는 영향)

  • Jeong, Chang-Won;Kim, Kyung-Dae;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.319-327
    • /
    • 2001
  • The objective of this study is to clarify the effect of thermal radiation environments on human thermal comfort, depending on different canyon types and surface materials on the human thermal comfort in a housing complex in Pohang city, Korea. For this purpose, the operative temperature and new effective temperature were calculated based on the modified mean radiant temperature of canyon models variated by the existence of direct radiation existence, surface materials, and the width and length of the street spaces in a housing complex. These indices for the canyon have been calculated from the meteorological data of Pohang city, which include air temperature, relative humidity, air velocity, global solar radiation and cloud. And the monthly averages of these climate factors measured at noon have been used. The results are as follows: (1) It is revealed that the short-wave radiosity reached the human body is affected by direct solar radiation and surface materials, and the long-wave radiosity by canyon types. (2) The existence of direct solar radiation, the kinds of surface materials and canyon types affect operative temperature($OT_n$) and new effective temperature($ET^*{_n}$). (3) The analysis of the human heat balance in the canyon indicates that the influence of radiation on human body is marc likely to be affected by the existence of direct solar radiation on human model.

  • PDF

Development of a New E-$\varepsilon$ Turbulence Model for Analysing the Air Flow Field within an Urban Street Canyon (도시협곡내 유동장 해석을 위한 새로운 E-$\varepsilon$ 난류 모델의 개발)

  • 정상진;박옥현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 1999
  • A new E-$\varepsilon$ turbulence numerical model is proposed for analysing the turbulent air flow field within are urban street canyon. In this model the equations of eddy viscosity and energy dissipation ae reformed by considering the Kolmogorov time scale and streamline curvature effect. Application results of the new E-$\varepsilon$ model have been compared with those of standard E-$\varepsilon$ model and Yang and Shih's one, which are commonly used ones in engineering fields, and with field experiment results of DePaul and Sheih. The new model appears to be generally superior to other both models in the prediction of an air flow field within street canyon.

  • PDF

A Study on Development of the Secondary Reverse Vortex in Building Canyon (건물협곡에서의 2차 역회전 소용돌이 형성에 관한 연구)

  • Son, Minu;Kim, Do-Yong
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.528-535
    • /
    • 2018
  • In this study, the effect of obstacle aspect ratio on vortex in building canyon was numerically investigated using a computational fluid dynamics(CFD) model. The sensitivity experiments were performed in the cases of increasing building length(L) and height(H) by the width(W) of building canyon. The wind vector fields and secondary reverse vortex in building canyon were discussed in this study. For the horizontal vortex, the vortex zone increased as the building length increases, but the vectors at the middle of building canyon began to change in the case of L/W=2.5. In the case of L/W=3.0, the smaller primary vortex was presented with the secondary reverse vortex. For the vertical vortex, the vortex zone increased as the building height increases, but the direction of vectors at the bottom of building canyon began to change in the case of H/W=2.5. In the case of H/W=3.5, the smaller primary vortex was presented with the secondary reverse vortex.

Effects of Trees on Flow and Scalar Dispersion in an Urban Street Canyon (도시 협곡에서 수목이 흐름과 스칼라 물질 확산에 미치는 영향)

  • Kang, Geon;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.685-692
    • /
    • 2015
  • In this study, the effects of trees on flow and scalar dispersion in an urban street canyon were investigated using a computational fluid dynamics (CFD) model. For this, we implemented the drag terms of trees to the CFD model, and compared the CFD-simulated results to the wind-tunnel results. For comparison, we considered the same building configuration as the wind-tunnel experiment. The trees were located at the center of street canyon with the aspect ratio (defined as the ratio of the street width to the building height) of 1. First, the flow characteristics were analyzed in the tree-free and high-density tree cases and the results showed that the CFD model reproduced well the flow pattern of the wind-tunnel experiment and reflected the drag effect of trees in the street canyon. Then, the dispersion characteristics of scalar pollutants were investigated for the tree-free, low-density tree and medium-density tree cases. In the tree-free case, the nondimensionalized concentration distribution simulated by the CFD model was quite similar to that in the wind-tunnel experiment in magnitude and pattern. The correlation coefficients between the measured and simulated concentrations are more than 0.9 in all the cases. As the tree density increased, nondimensionalized concentration increased (decreased) near the wall of the upwind (downwind) building, which resulted from the decrease in wind speed case by the drag effect of trees. However, the CFD model underestimated (overestimated) the concentration near the wall of upwind (downwind) building.

Response of a frame structure on a canyon site to spatially varying ground motions

  • Bi, Kaiming;Hao, Hong;Ren, Weixin
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.111-127
    • /
    • 2010
  • This paper studies the effects of spatially varying ground motions on the responses of a bridge frame located on a canyon site. Compared to the spatial ground motions on a uniform flat site, which is the usual assumptions in the analysis of spatial ground motion variation effects on structures, the spatial ground motions at different locations on surface of a canyon site have different intensities owing to local site amplifications, besides the loss of coherency and phase difference. In the proposed approach, the spatial ground motions are modelled in two steps. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function and an empirical spatial ground motion coherency loss function. Then, power spectral density function of ground motion on surface of the canyon site is derived by considering the site amplification effect based on the one dimensional seismic wave propagation theory. Dynamic, quasi-static and total responses of the model structure to various cases of spatially varying ground motions are estimated. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effects, to spatial ground motions without considering coherency loss or phase shift are also calculated. Discussions on the ground motion spatial variation and local soil site amplification effects on structural responses are made. In particular, the effects of neglecting the site amplifications in the analysis as adopted in most studies of spatial ground motion effect on structural responses are highlighted.

Field measurements of wind characteristics over hilly terrain within surface layer

  • He, Y.C.;Chan, P.W.;Li, Q.S.
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.541-563
    • /
    • 2014
  • This paper investigates the topographic effects on wind characteristics over hilly terrain, based on wind data recorded at a number of meteorological stations in or near complex terrain. The multiply data sources allow a more detailed investigation of the flow field than is normally possible. Vertical profiles of mean and turbulent wind components from a Sodar profiler were presented and then modeled as functions of height and wind speed. The correlations between longitudinal and vertical wind components were discussed. The phenomena of flow separation and generation of vortices were observed. The distance-dependence of the topographic effects on gust factors was revealed subsequently. Furthermore, the canyon effect was identified and discussed based on the observations of wind at a saddle point between two mountain peaks. This study aims to further understanding of the characteristics of surface wind over rugged terrain. The presented results are expected to be useful for structural design, prevention of pollutant dispersion, and validation of CFD (computational fluid dynamics) models or techniques over complex terrains.

Development and distribution of geo-hazards triggered by the 5.12 Wenchuan Earthquake in China

  • Runqiu, Huang;Weile, Li
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1225-1234
    • /
    • 2009
  • As the Wenchuan Earthquake was of high magnitude and shallow seismic focus, it caused great damage and serious geo-hazards. By the field investigation and remote-sensing interpretation after the earthquake and by using means of GIS, the distribution of geo-hazards triggered by the earthquake was analyzed and the conclusions are as follows: (1) the earthquake geo-hazards showed the feature of zonal distribution along the earthquake fault zone and linear distribution along the rivers; (2) the distribution of earthquake geo-hazards had a marked hanging wall effect, for the development density of geo-hazards in the hanging wall of earthquake fault was obviously higher than that in the foot wall and the width of strong development zone in the hanging wall was about 10 km; (3) the topographical slope was a main factor which controlled the development of earthquake geo-hazards and a vast majority of geo-hazards were distributed on the slopes of 20 to 50 degrees; (4) the earthquake geo-hazards had a corresponding relationship with the elevation and micro-landform, for most hazards happened in the river valleys and canyon sections below the elevation of 1500 to 2000 m, particularly in the upper segment of canyon sections (namely, the turning point from the dale to the canyon). Thin ridge, isolated or full-face space mountains were most sensitive to the seismic wave, and had a striking amplifying effect. In these areas, collapses and landslides were most likely to develop; (5) the study also showed that different lithologies determined the types of geo-hazards, and usually, landslides occurred in soft rocks, while collapses occurred in hard rocks.

  • PDF

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

Urban Street Planting Scenarios Simulation for Micro-scale Urban Heat Island Effect Mitigation in Seoul (미시적 열섬현상 저감을 위한 도시 가로수 식재 시나리오별 분석 - 서울시를 대상으로 -)

  • Kwon, You Jin;Lee, Dong Kun;Ahn, Saekyul
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • Global warming becomes a serious issue that poses subsidiary issues like a sea level rise or a capricious climate over the world. Because of severe heat-wave of the summer in Korea in 2016, a big attention has been focused on urban heat island since then. Not just about heat-wave itself, many researches have been concentrated on how to adapt in this trendy warming climate and weather in a small scope. A big part of existing studies is mitigating "Urban Heat Island effect" and that is because of huge impervious surface in urban area where highly populated areas do diverse activities. It is a serious problem that this thermal context has a high possibility causing mortality by heat vulnerability. However, there have been many articles of a green infrastructures' cooling impact in summer. This research pays attention to measure cooling effect of a street planting considering urban canyon and type of green infrastructures in neighborhood scale. This quantitative approach was proceeded by ENVI-met simulation with a spatial scope of a commercial block in Seoul, Korea. We found the dense double-row planting is more sensitive to change in temperature than that of the single-row. Among the double-row planting scenarios, shrubs which have narrow space between the plant and the land surface were found to store heat inside during the daytime and prevent emitting heat so as to have a higher temperature at night. The quantifying an amount of vegetated spaces' cooling effect research is expected to contribute to a study of the cost and benefit for the planting scenarios' assessment in the future.

Study on Detailed Air Flows in Urban Areas Using GIS Data in a Vector Format and a CFD Model (벡터 형식의 GIS 자료와 CFD 모델을 이용한 도시 지역 상세 대기 흐름 연구)

  • Kwon, A-Rum;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.755-767
    • /
    • 2014
  • In this study, detailed air flow characteristics in an urban areas were analyzed using GIS data and a Computational Fluid Dynamics (CFD) model. For this, a building construction algorithm optimized for Geographic Information System (GIS) data with a vector format (Los Angeles region imagery acquisition consortium 2 geographic information system, LARIAC2 GIS) was used. In the LARIAC2 GIS data, building vertices were expressed as latitude and longitude. Using the model buildings constructed by the algorithm as the surface boundary data in the CFD model, we performed numerical simulations for two building-congested areas in Los Angeles using inflow information provided by California Air Resources Board. Comparing with the inflow, there was a marked difference in wind speed and direction within the target areas, which was mainly caused by the secondarily induced local circulations such as street-canyon vortices, horse-shoe vortices, and recirculation zones. In street canyons parallel to the inflow direction, wind speed increased due to a channeling effect and, in street canyons perpendicular to the inflow direction, vertically well developed vortices were induced. In front of a building, a horse-shoe vortex was developed near the surface and, behind a building, a recirculation zone was developed. Near the surface in the areas where the secondarily induced local circulations, wind speed remarkably increased. Overall, wind direction little (largely) changed at the areas where wind speed largely increased (decreased).