DOI QR코드

DOI QR Code

A Study on Development of the Secondary Reverse Vortex in Building Canyon

건물협곡에서의 2차 역회전 소용돌이 형성에 관한 연구

  • Son, Minu (Dept. of Environmental Engineering, Mokpo National University) ;
  • Kim, Do-Yong (Dept. of Environmental Engineering, Mokpo National University)
  • 손민우 (목포대학교 환경공학과(기후변화연구소)) ;
  • 김도용 (목포대학교 환경공학과(기후변화연구소))
  • Received : 2018.09.19
  • Accepted : 2018.12.21
  • Published : 2018.12.31

Abstract

In this study, the effect of obstacle aspect ratio on vortex in building canyon was numerically investigated using a computational fluid dynamics(CFD) model. The sensitivity experiments were performed in the cases of increasing building length(L) and height(H) by the width(W) of building canyon. The wind vector fields and secondary reverse vortex in building canyon were discussed in this study. For the horizontal vortex, the vortex zone increased as the building length increases, but the vectors at the middle of building canyon began to change in the case of L/W=2.5. In the case of L/W=3.0, the smaller primary vortex was presented with the secondary reverse vortex. For the vertical vortex, the vortex zone increased as the building height increases, but the direction of vectors at the bottom of building canyon began to change in the case of H/W=2.5. In the case of H/W=3.5, the smaller primary vortex was presented with the secondary reverse vortex.

본 연구에서는 전산유체역학(CFD) 모델을 이용하여, 건물 외관비에 따른 건물협곡에서의 소용돌이 현상을 재현하고 정량적인 해석을 시도하였다. 이를 위하여 건물협곡의 폭(W)을 기준으로 건물의 길이(L) 및 높이(H) 증가에 따른 민감도 실험을 수행하였으며, 건물협곡에서의 바람 벡터장과 2차 역회전 소용돌이의 형성 등을 분석하였다. 수평소용돌이의 경우에는 건물의 길이 증가에 따라 성장하다가 L/W=2.5부터 건물협곡의 중앙부에서 벡터의 크기 약화 및 방향 변화 등의 조짐이 보이기 시작하였고, L/W=3.0 이상에서 흐름이 분리되어 1차 소용돌이는 약화되고 건물협곡의 안쪽에서 2차 역회전 소용돌이가 형성되었다. 연직소용돌이의 경우에는 건물의 높이 증가에 따라 성장하다가 H/W=2.5부터 건물협곡의 하부에서 벡터의 방향전환 현상이 나타나기 시작하였고, H/W=3.5 이상의 조건에서 1차 소용돌이는 약화되고 2차 역회전 소용돌이가 형성되었다.

Keywords

References

  1. Cho, H. S., Joung, Y. J., Choi, M. J., Effects of the Urban Spatial Characteristics on Urban Heat Island, J. of Environmental Policy and Administration, 22(2), 27-43, 2014. https://doi.org/10.15301/jepa.2014.22.4.27
  2. Yun, J., A Study on the Prediction and the Evaluation of the Wind Environments around High-Rise Buildings by Using a Wind Tunnel Test, J. of the Architectural Institute of Korea-Planning & Design, 15(5), 155-162, 1999.
  3. Cheong, C. H., Ryu, S. R., An Analysis on the Building Wind Variation in the Residential Community Pedestrian Area by the Planting Method, J. of the Architectural Institute of Korea-Planning & Design, 29(11), 253-262, 2013.
  4. Shin, J. W., Lee, Y. J., Kim, T. Y., Lee, K. H., A Study on the Windbreak Facilities Design for Reducing Building Wind Damage to Pedestrian Area, Proceedings of the 60th Anniversary and Annual Conference of AIK (Architectural Institute of Korea), AIK, Seoul, 25(1), 147-150, 2005.
  5. Lee, S. M., Ji, Y. S., Song, D., A Proposal of the Prediction and Evaluation Method of Wind Environment at the Early Design Stage Using BIM Model, Proceedings of the SAREK (The Society of Air- Conditioning and Refrigerating Engineers of Korea) Annual Summer Conference, SAREK, Pyeong Chang, 267-273, 2010.
  6. Lim, E. H., Han, J. I., Eom, W. G., Three-Dimensional Numerical Simulation to Evaluate the Effects of Incident Wind Shear and the Aspect Ratio on the Flow Around the Building, Asia-Pacific J. of Atmospheric Sciences, 32(2), 303-313, 1996.
  7. Kim, J. J., The Effects of Obstacle Aspect Ratio on Surrounding Flows, Atmosphere, 17(4), 381-391, 2007.
  8. Kim, J. J., Baik, J. J., A Numerical Study of the Effects of Ambient Wind Direction on Flow and Dispersion in Urban Street Canyons Using the RNG k-$\varepsilon$ Turbulence Model, Atmospheric Environment, 38(19), 3039-3048, 2004. https://doi.org/10.1016/j.atmosenv.2004.02.047
  9. Kim, D. Y., Kim, J. J., Evaluation of Atmospheric Environment for Construction of Bridge in Island, J. of the Korean Society for Environmental Technology, 17(4), 353-361, 2016.
  10. Kim, J. J., Baik, J. J., Effects of Streetbottom and Building-roof Heating on Flow in Three-dimensional Street Canyons, Advances in Atmospheric Sciences, 27(3), 513-527, 2010. https://doi.org/10.1007/s00376-009-9095-2
  11. Park, S. J., Kim, J. J., Effects of Buildingroof Cooling on Scalar Dispersion in Urban Street Canyons, Atmosphere, 24(3), 331-341, 2014. https://doi.org/10.14191/Atmos.2014.24.3.331
  12. Kim, D. Y., Kim, J. J., Effect of Artificial Changes in Geographical Features on Local Wind, Korean J. of Remote Sensing, 32(2), 185-194, 2016. https://doi.org/10.7780/kjrs.2016.32.2.10
  13. Versteeg, H. K., Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Second Edition, Pearson Education Limited, England, 66-98, 2007.