• Title/Summary/Keyword: camera vision

Search Result 1,386, Processing Time 0.028 seconds

Automatic Extraction and Measurement of Visual Features of Mushroom (Lentinus edodes L.) (표고 외관 특징점의 자동 추출 및 측정)

  • Hwang, Heon;Lee, Yong-Guk
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 1992
  • Quantizing and extracting visual features of mushroom(Lentinus edodes L.) are crucial to the sorting and grading automation, the growth state measurement, and the dried performance indexing. A computer image processing system was utilized for the extraction and measurement of visual features of front and back sides of the mushroom. The image processing system is composed of the IBM PC compatible 386DK, ITEX PCVISION Plus frame grabber, B/W CCD camera, VGA color graphic monitor, and image output RGB monitor. In this paper, an automatic thresholding algorithm was developed to yield the segmented binary image representing skin states of the front and back sides. An eight directional Freeman's chain coding was modified to solve the edge disconnectivity by gradually expanding the mask size of 3$\times$3 to 9$\times$9. A real scaled geometric quantity of the object was directly extracted from the 8-directional chain element. The external shape of the mushroom was analyzed and converted to the quantitative feature patterns. Efficient algorithms for the extraction of the selected feature patterns and the recognition of the front and back side were developed. The developed algorithms were coded in a menu driven way using MS_C language Ver.6.0, PC VISION PLUS library fuctions, and VGA graphic functions.

  • PDF

Optical Implementation of Associative Menory Based on Two-Dimensional Neural Network Model (2차원 신경회로망 모델에 근거한 광연상 메모리의 실현)

  • 한종욱;박인호;이승현;이우상;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.8
    • /
    • pp.667-677
    • /
    • 1990
  • In this paper, optical inplementation of the Hopfield neural network model for two-dimensinal associative memory is described For the real-time processing of two-dimensional images, the commercial LCTVs are used as a memory mask and an input spatical light modulator. A 4-D memory matrix is realized with a 2-D mask of a matrix arrangement and the inner-products between arbitrary input pattern and memory matrix are carried out by using the multifocus hololens. The output image is then electronically thresholded and fed back to the input of the associative memory system by 2-D CCd camera. From the good experimental results for the high error correction capability, the proposed system can be applied to practical pattern recognition and machine vision systems.

  • PDF

Asynchronous Sensor Fusion using Multi-rate Kalman Filter (다중주기 칼만 필터를 이용한 비동기 센서 융합)

  • Son, Young Seop;Kim, Wonhee;Lee, Seung-Hi;Chung, Chung Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1551-1558
    • /
    • 2014
  • We propose a multi-rate sensor fusion of vision and radar using Kalman filter to solve problems of asynchronized and multi-rate sampling periods in object vehicle tracking. A model based prediction of object vehicles is performed with a decentralized multi-rate Kalman filter for each sensor (vision and radar sensors.) To obtain the improvement in the performance of position prediction, different weighting is applied to each sensor's predicted object position from the multi-rate Kalman filter. The proposed method can provide estimated position of the object vehicles at every sampling time of ECU. The Mahalanobis distance is used to make correspondence among the measured and predicted objects. Through the experimental results, we validate that the post-processed fusion data give us improved tracking performance. The proposed method obtained two times improvement in the object tracking performance compared to single sensor method (camera or radar sensor) in the view point of roots mean square error.

Lane-Level Positioning based on 3D Tracking Path of Traffic Signs (교통 표지판의 3차원 추적 경로를 이용한 자동차의 주행 차로 추정)

  • Park, Soon-Yong;Kim, Sung-ju
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.172-182
    • /
    • 2016
  • Lane-level vehicle positioning is an important task for enhancing the accuracy of in-vehicle navigation systems and the safety of autonomous vehicles. GPS (Global Positioning System) and DGPS (Differential GPS) are generally used in navigation service systems, which however only provide an accuracy level up to 2~3 m. In this paper, we propose a 3D vision based lane-level positioning technique which can provides accurate vehicle position. The proposed method determines the current driving lane of a vehicle by tracking the 3D position of traffic signs which stand at the side of the road. Using a stereo camera, the 3D tracking paths of traffic signs are computed and their projections to the 2D road plane are used to determine the distance from the vehicle to the signs. Several experiments are performed to analyze the feasibility of the proposed method in many real roads. According to the experimental results, the proposed method can achieve 90.9% accuracy in lane-level positioning.

Quality Inspection and Sorting in Eggs by Machine Vision

  • Cho, Han-Keun;Yang Kwon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.834-841
    • /
    • 1996
  • Egg production in Korea is becoming automated with a large scale farm. Although many operations in egg production have been and cracks are regraded as a critical problem. A computer vision system was built to generate images of a single , stationary egg. This system includes a CCD camera, a frame grabber board, a personal computer (IBM PC AT 486) and an incandescent back lighting system. Image processing algorithms were developed to inspect egg shell and to sort eggs. Those values of both gray level and area of dark spots in the egg image were used as criteria to detect holes in egg and those values of both area and roundness of dark spots in the egg and those values of both area and roundness of dark spots in the egg image were used to detect cracks in egg. Fro a sample of 300 eggs. this system was able to correctly analyze an egg for the presence of a defect 97.5% of the time. The weights of eggs were found to be linear to both the projected area and the perimeter of eggs v ewed from above. Those two values were used as criteria to sort eggs. Accuracy in grading was found to be 96.7% as compared with results from weight by electronic scale.

  • PDF

Visual Sensing of Fires Using Color and Dynamic Features (컬러와 동적 특징을 이용한 화재의 시각적 감지)

  • Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.211-216
    • /
    • 2012
  • Fires are the most common disaster and early fire detection is of great importance to minimize the consequent damage. Simple sensors including smoke detectors are widely used for the purpose but they are able to sense fires only at close proximity. Recently, due to the rapid advances of relevant technologies, vision-based fire sensing has attracted growing attention. In this paper, a novel visual sensing technique to automatically detect fire is presented. The proposed technique consists of multiple steps of image processing: pixel-level, block-level, and frame level. At the first step, fire flame pixel candidates are selected based on their color values in YIQ space from the image of a camera which is installed as a vision sensor at a fire scene. At the second step, the dynamic parts of flames are extracted by comparing two consecutive images. These parts are then represented in regularly divided image blocks to reduce pixel-level detection error and simplify following processing. Finally, the temporal change of the detected blocks is analyzed to confirm the spread of fire. The proposed technique was tested using real fire images and it worked quite reliably.

A Study on Real-time Control of Bead Height and Joint Tracking (비드 높이 및 조인트 추적의 실시간 제어 연구)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.71-78
    • /
    • 2007
  • There have been continuous efforts to automate welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, and using this, the 3 dimensional geometry of the bead is measured in real time. For the application in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

Study of Methodology for Recognizing Multiple Objects (다중물체 인식 방법론에 관한 연구)

  • Lee, Hyun-Chang;Koh, Jin-Kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.51-57
    • /
    • 2008
  • In recent computer vision or robotics fields, the research area of object recognition from image using low cost web camera or other video device is performed actively. As study for this, there are various methodologies suggested to retrieve objects in robotics and vision research areas. Also, robotics is designed and manufactured to aim at doing like human being. For instance, a person perceives apples as one see apples because of previously knowing the fact that it is apple in one's mind. Like this, robotics need to store the information of any object of what the robotics see. Therefore, in this paper, we propose an methodology that we can rapidly recognize objects which is stored in object database by using SIFT (scale invariant feature transform) algorithm to get information about the object. And then we implement the methodology to enable to recognize simultaneously multiple objects in an image.

  • PDF

A study on the inspection algorithm of FIC device in chip mounter (칩 마운터에의 FIC 부품 인식에 관한 연구)

  • Lyou, Kyoung;Moon, Yun-Shik;Kim, Kyoung-Min;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.384-391
    • /
    • 1998
  • When a device is mounted on the PCB, it is impossible to have zero defects due to many unpredictable problems. Among these problems, devices with bent corner leads due to mis-handling and which are not placed at a given point measured along the axis are principal problem in SMT(Surface Mounting Technology). It is obvious that given the complexity of the inspection task, the efficiency of a human inspection is questionable. Thus, new technologies for inspection of SMD(Surface Mounting Device) should be explored. An example of such technologies is the Automated Visual Inspection(AVI), wherein the vision system plays a key role to correct this problem. In implementing vision system, high-speed and high-precision are indispensable for practical purposes. In this paper, a new algorithm based on the Radon transform which uses a projection technique to inspect the FIC(Flat Integrated Circuit) device is proposed. The proposed algorithm is compared with other algorithms by measuring the position error(center and angle) and the processing time for the device image, characterized by line scan camera.

  • PDF

A Study on Analog and Digital Meter Recognition Based on Image Processing Technique (영상처리 기법에 기반한 아날로그 및 디지틀 계기의 자동인식에 관한 연구)

  • 김경호;진성일;이용범;이종민
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1215-1230
    • /
    • 1995
  • The purpose of this paper is to build a computer vision system that endows an autonomous mobile robot the ability of automatic measuring of the analog and digital meters installed in nuclear power plant(NPP). This computer vision system takes a significant part in the organization of automatic surveillance and measurement system having the instruments and gadzets in NPP under automatic control situation. In the meter image captured by the camera, the meter area is sorted out using mainly the thresholding and the region labeling and the meter value recognition process follows. The positions and the angles of the needles in analog meter images are detected using the projection based method. In the case of digital meters, digits and points are extracted and finally recognized through the neural network classifier. To use available database containing relevant information about meters and to build fully automatic meter recognition system, the segmentation and recognition of the function-name in the meter printed around the meter area should be achieved for enhancing identification reliability. For thus, the function- name of the meter needs to be identified and furthermore the scale distributions and values are also required to be analyzed for building the more sophisticated system and making the meter recognition fully automatic.

  • PDF