• Title/Summary/Keyword: camera image

Search Result 4,917, Processing Time 0.258 seconds

Phenophase Extraction from Repeat Digital Photography in the Northern Temperate Type Deciduous Broadleaf Forest (온대북부형 낙엽활엽수림의 디지털 카메라 반복 이미지를 활용한 식물계절 분석)

  • Han, Sang Hak;Yun, Chung Weon;Lee, Sanghun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.361-370
    • /
    • 2020
  • Long-term observation of the life cycle of plants allows the identification of critical signals of the effects of climate change on plants. Indeed, plant phenology is the simplest approach to detect climate change. Observation of seasonal changes in plants using digital repeat imaging helps in overcoming the limitations of both traditional methods and satellite remote sensing. In this study, we demonstrate the utility of camera-based repeat digital imaging in this context. We observed the biological events of plants and quantified their phenophases in the northern temperate type deciduous broadleaf forest of Jeombong Mountain. This study aimed to identify trends in seasonal characteristics of Quercus mongolica (deciduous broadleaf forest) and Pinus densiflora (evergreen coniferous forest). The vegetation index, green chromatic coordinate (GCC), was calculated from the RGB channel image data. The magnitude of the GCC amplitude was smaller in the evergreen coniferous forest than in the deciduous forest. The slope of the GCC (increased in spring and decreased in autumn) was moderate in the evergreen coniferous forest compared with that in the deciduous forest. In the pine forest, the beginning of growth occurred earlier than that in the red oak forest, whereas the end of growth was later. Verification of the accuracy of the phenophases showed high accuracy with root-mean-square error (RMSE) values of 0.008 (region of interest [ROI]1) and 0.006 (ROI3). These results reflect the tendency of the GCC trajectory in a northern temperate type deciduous broadleaf forest. Based on the results, we propose that repeat imaging using digital cameras will be useful for the observation of phenophases.

Evaluation of Near-infrared Fluorescence-conjugated Peptides for Visualization of Human Epidermal Receptor 2-overexpressed Gastric Cancer

  • Jeong, Kyoungyun;Kong, Seong-Ho;Bae, Seong-Woo;Park, Cho Rong;Berlth, Felix;Shin, Jae Hwan;Lee, Yun-Sang;Youn, Hyewon;Koo, Eunhee;Suh, Yun-Suhk;Park, Do Joong;Lee, Hyuk-Joon;Yang, Han-Kwang
    • Journal of Gastric Cancer
    • /
    • v.21 no.2
    • /
    • pp.191-202
    • /
    • 2021
  • Purpose: A near-infrared (NIR) fluorescence imaging is a promising tool for cancer-specific image guided surgery. Human epidermal receptor 2 (HER2) is one of the candidate markers for gastric cancer. In this study, we aimed to synthesize HER2-specific NIR fluorescence probes and evaluate their applicability in cancer-specific image-guided surgeries using an animal model. Materials and Methods: An NIR dye emitting light at 800 nm (IRDye800CW; Li-COR) was conjugated to trastuzumab and an HER2-specific affibody using a click mechanism. HER2 affinity was assessed using surface plasmon resonance. Gastric cancer cell lines (NCI-N87 and SNU-601) were subcutaneously implanted into female BALB/c nu (6-8 weeks old) mice. After intravenous injection of the probes, biodistribution and fluorescence signal intensity were measured using Lumina II (Perkin Elmer) and a laparoscopic NIR camera (InTheSmart). Results: Trastuzumab-IRDye800CW exhibited high affinity for HER2 (KD=2.093(3) pM). Fluorescence signals in the liver and spleen were the highest at 24 hours post injection, while the signal in HER2-positive tumor cells increased until 72 hours, as assessed using the Lumina II system. The signal corresponding to the tumor was visually identified and clearly differentiated from the liver after 72 hours using a laparoscopic NIR camera. Affibody-IRDye800CW also exhibited high affinity for HER2 (KD=4.71 nM); however, the signal was not identified in the tumor, probably owing to rapid renal clearance. Conclusions: Trastuzumab-IRDye800CW may be used as a potential NIR probe that can be injected 2-3 days before surgery to obtain high HER2-specific signal and contrast. Affibody-based NIR probes may require modifications to enhance mobilization to the tumor site.

Analysis of movement in (2013) (<셜리에 관한 모든 것>(2013)에 나타난 움직임 분석)

  • Moon, Jae-Cheol;Lee, Jin-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.6
    • /
    • pp.43-52
    • /
    • 2020
  • This paper is a study of Gustav Deutsch's film (2013). The film transformed the painting of Edward Hopper into an homage film. So it gives the impression that the picture is moving. In this regard, it raises the issue of 'remediation' between film and pictures. In this study, We ask how (2013) dealt with the movement in turning Hopper's paintings into movies. To that end, To this end, we look at two aspects of movement: the actor's movement and the screen's movement. The concepts of "tableau vivant," Agamben's gesture and mediation were used in the process. The actor's movement in the film is not an act of making and developing events. It is a gesture that moves a person's body and expression itself. It is not a story-oriented acting, but a gesture that Giorgio Agamben said. Editing and camera movements are used while maintaining frontality. This suggests that the movement of the screen is the eye of the audience. At first glance, it embodies the voyeuristic gaze of the original work. However, But the audience isn't looking at the image unilaterally, as in mainstream fiction films, but they are also being seen by that image. Also, the camera's movement to take a closer look at the details of the screen shows the movement itself rather than the means to reveal the details. The 'vision of reality' in a film is made through movement. The film questions the vision of reality between painting and film, between words and images. The move is a means of mediating reality, but the film is regaining the "lost gesture" that Giorgio Agamben once said by revealing its mediated nature. This tells us that the vision of reality appears when it obscures its mediated nature.

A Study on Digital Color Reproduction for Recording Color Appearance of Cultural Heritage (문화유산의 현색(顯色) 기록화를 위한 디지털 색재현 연구)

  • Song, Hyeong Rok;Jo, Young Hoon
    • Journal of Conservation Science
    • /
    • v.38 no.2
    • /
    • pp.154-165
    • /
    • 2022
  • The color appearance of cultural heritage are essential factors for manufacturing technique interpretation, conservation treatment usage, and condition monitoring. Therefore, this study systematically established color reproduction procedures based on the digital color management system for the portrait of Gwon Eungsu. Moreover, various application strategies for recording and conserving the cultural heritage were proposed. Overall color reproduction processes were conducted in the following order: photography condition setting, standard color measurements, digital photography, color correction, and color space creation. Therefore, compared with the color appearance, the digital image applied to a camera maker profile indicated an average color difference of 𝜟10.1. However, the digital reproduction result based on the color management system exhibits an average color difference of 𝜟1.1, which is close to the color appearance. This means that although digital photography conditions are optimized, recording the color appearance is difficult when relying on the correction algorithm developed by the camera maker. Therefore, the digital color reproduction of cultural heritage is required through color correction and color space creation based on the raw digital image, which is a crucial process for documenting the color appearance. Additionally, the recording of color appearance through digital color reproduction is important for condition evaluation, conservation treatment, and restoration of cultural heritage. Furthermore, standard data of imaging analysis are available for discoloration monitoring.

Concrete Crack Detection Inside Finishing Materials Using Lock-in Thermography (위상 잠금 열화상 기법을 이용한 콘크리트 마감재 내부 균열 검출)

  • Myung-Hun Lee;Ukyong Woo;Hajin Choi;Jong-Chan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.30-38
    • /
    • 2023
  • As the number of old buildings subject to safety inspection increases, the burden on designated institutions and management entities that are responsible for safety management is increasing. Accordingly, when selecting buildings subject to safety inspection, appropriate safety inspection standards and appropriate technology are essential. The current safety inspection standards for old buildings give low scores when it is difficult to confirm damage such as cracks in structural members due to finishing materials. This causes the evaluation results to be underestimated regardless of the actual safety status of the structure, resulting in an increase in the number of aging buildings subject to safety inspection. Accordingly, this study proposed a thermal imaging technique, a non-destructive and non-contact inspection, to detect cracks inside finishing materials. A concrete specimen was produced to observe cracks inside the finishing material using a thermal imaging camera, and thermal image data was measured by exciting a heat source on the concrete surface and cracked area. As a result of the measurement, it was confirmed that it was possible to observe cracks inside the finishing material with a width of 0.3mm, 0.5mm, and 0.7mm, but it was difficult to determine the cracks due to uneven temperature distribution due to surface peeling and peeling of the wallpaper. Accordingly, as a result of performing data analysis by deriving the amplitude and phase difference of the thermal image data, clear crack measurement was possible for 0.5mm and 0.7mm cracks. Based on this study, we hope to increase the efficiency of field application and analysis through the development of technology using big data-based deep learning in the diagnosis of internal crack damage in finishing materials.

Real-Time Tracking of Moving Object by Adaptive Search in Spatial-temporal Spaces (시공간 적응탐색에 의한 실시간 이동물체 추적)

  • Kim, Gye-Young;Choi, Hyung-Ill
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.63-77
    • /
    • 1994
  • This paper describes the real-time system which, through analyzing a sequence of images, can extract motional information on a moving object and can contol servo equipment to always locate the moving object at the center of an image frame. An image is a vast amount of two-dimensional signal, so it takes a lot of time to analyze the whole quantity of a given image. Especially, the time needed to load pixels from a memory to processor increase exponentially as the size of an image increases. To solve such a problem and track a moving object in real-time, this paper addresses how to selectively search the spatial and time domain. Based on the selective search of spatial and time domain, this paper suggests various types of techniques which are essential in implementing a real-time tracking system. That is, this paper describes how to detect an entrance of a moving object in the field of view of a camera and the direction of the entrance, how to determine the time interval of adjacent images, how to determine nonstationary areas formed by a moving object and calculated velocity and position information of a moving object based on the determined areas, how to control servo equipment to locate the moving object at the center of an image frame, and how to properly adjust time interval(${\Delta}$t) to track an object taking variable speed.

  • PDF

A Method for Recovering Text Regions in Video using Extended Block Matching and Region Compensation (확장적 블록 정합 방법과 영역 보상법을 이용한 비디오 문자 영역 복원 방법)

  • 전병태;배영래
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.767-774
    • /
    • 2002
  • Conventional research on image restoration has focused on restoring degraded images resulting from image formation, storage and communication, mainly in the signal processing field. Related research on recovering original image information of caption regions includes a method using BMA(block matching algorithm). The method has problem with frequent incorrect matching and propagating the errors by incorrect matching. Moreover, it is impossible to recover the frames between two scene changes when scene changes occur more than twice. In this paper, we propose a method for recovering original images using EBMA(Extended Block Matching Algorithm) and a region compensation method. To use it in original image recovery, the method extracts a priori knowledge such as information about scene changes, camera motion and caption regions. The method decides the direction of recovery using the extracted caption information(the start and end frames of a caption) and scene change information. According to the direction of recovery, the recovery is performed in units of character components using EBMA and the region compensation method. Experimental results show that EBMA results in good recovery regardless of the speed of moving object and complexity of background in video. The region compensation method recovered original images successfully, when there is no information about the original image to refer to.

A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image (실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Seok, Jin-Wook;Kim, Ki-Sang;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

Producing Stereoscopic Video Contents Using Transformation of Character Objects (캐릭터 객체의 변환을 이용하는 입체 동영상 콘텐츠 제작)

  • Lee, Kwan-Wook;Won, Ji-Yeon;Choi, Chang-Yeol;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.33-43
    • /
    • 2011
  • Recently, 3D displays are supplied in the 3D markets so that the demand for 3D stereoscopic contents increases. In general, a simple method is to use a stereoscopic camera. As well, the production of 3D from 2D materials is regarded as an important technology. Such conversion works have gained much interest in the field of 3D converting. However, the stereoscopic image generation from a single 2D image is limited to simple 2D to 3D conversion so that the better realistic perception is difficult to deliver to the users. This paper presents a new stereoscopic content production method where foreground objects undergo alive action events. Further stereoscopic animation is viewed on 3D displays. Given a 2D image, the production is composed of background image generation, foreground object extraction, object/background depth maps and stereoscopic image generation The alive objects are made using the geometric transformation (e.g., translation, rotation, scaling, etc). The proposed method is performed on a Korean traditional painting, Danopungjung as well as Pixar's Up. The animated video showed that through the utilization of simple object transformations, more realistic perception can be delivered to the viewers.

Verification of Microstructure Qualities of ACR-Approved Mammography Phantoms by Refraction-Enhanced Synchrotron Radiation Imaging

  • Imamura, Keiko;Ehara, Norishige;Inada, Yoichi;Miyamoto, Keiko;Kanemaki, Yoshihide;Umetani, Keiji;Uesugi, Kentaro;Ochiai, Yoshinori;Fukuda, Mamoru;Nakajima, Yasuo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.415-417
    • /
    • 2002
  • Images of microcalcification specks showed large variation in conventional radiographs of phantoms which are approved for mammography image quality standard by the American College of Radiology (ACR). This kind of variation is not appropriate for image quality standards because the number of specks are visually counted in images and that number is important in image quality evaluation. Our study using synchrotron radiation (SR) imaging revealed the overlapping of micro-sized air bubble(s) to some specks, and also the structural deformation or crackings. Eight phantoms approved by ACR from two different makers and an air-bubble phantom were examined. SR imaging was performed at a synchrotron radiation facility, SPring-8, in Japan. The image-detector was a fluorescent-screen optical-lens coupling system using a CCD camera with a spatial resolution of 6 $\square$m. Objects when imaged with longer sample-to-detector distance show edge enhancement due to a difference in refraction indices, that is refraction enhancement. Refraction-enhanced SR images revealed that some of specks carried foreign objects, which were proven to be air. In phantoms provided by one maker, attaching/overlapping airs were observed for 62 out of 150 specks (41%) , with a higher incidence for the smallest specks. A speck becomes hardly visible in a conventional radiograph when air(s) overlaps the majority part of a speck, though depending on the size of the air-inclusion and on its configuration. Those airs might have been adsorbed on a speck surface before being embedded and then introduced into the matrix together with specks. Our study using SR imaging has clearly shown the nature of defects in some mammography phantoms which seriously degrade the quality as an image standard.

  • PDF