• 제목/요약/키워드: calvarial bone graft

검색결과 95건 처리시간 0.02초

전기적 자극이 배양 두개관 골세포의 석회화에 미치는 영향에 관한 연구 (A study of the effects of electric current on the mineralzation of the cultured calvaria bone cells)

  • 박준봉;허인식;이혜자;최영철
    • Journal of Periodontal and Implant Science
    • /
    • 제27권4호
    • /
    • pp.949-961
    • /
    • 1997
  • To date, various clinical procedures have been used to restore periodontal apparatus destroyed by periodontal disease. And then, many experimental approaches have been proceeded to develop treatment methods to promote periodontal regeneration. Mechanical, chemical treatments to enhance the attachment of periodontal tissue cells as changing the physical properties of root surfaces, bone graft procedure, and treatments for guided tissue regeneration have been used for periodontal regeneration. However, recent studies have revealed that biologic factors such as growth factors promote biologic mechanism associated with periodontal regeneration. This study was done to enucleate how ELF stimulus affect the periodontal regeneration. We can have following conclusions from this experimental results. The influence of low frequency(ELF) electric stimulus (30Hz at $lO{\mu}A$) known to promote bone formation in vivo, was evaluated for its ability to affect bone cell function in vitro. After 12 hour exposure of ELF stimulus at most appropriate densities ($5{\times}10^4\;cells/cm^2$) to increase osteoblastic cells normally, rat calvarial cells were incubated for 60 hours were used in this study. We have found ELF stimulus suppress calvarial cell proliferation and the ability of protein synthesis, enhance the alkaline phosphatase activity significantly.

  • PDF

The biological effect of cyanoacrylate-combined calcium phosphate in rabbit calvarial defects

  • Chang, Yun-Young;Dissanayake, Surangi;Yun, Jeong-Ho;Jung, Ui-Won;Kim, Chang-Sung;Park, Kyeong-Jun;Chai, Jung-Kiu;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제41권3호
    • /
    • pp.123-130
    • /
    • 2011
  • Purpose: The purpose of this study was to determine the biological effects of cyanoacrylate-combined calcium phosphate (CCP), in particular its potential to act as a physical barrier - functioning like a membrane - in rabbit calvarial defects. Methods: In each animal, four circular calvarial defects with a diameter of 8 mm were prepared and then filled with either nothing (control group) or one of three different experimental materials. In the experimental conditions, they were filled with CCP alone (CCP group), filled with biphasic calcium phosphate (BCP) and then covered with an absorbable collagen sponge (ACS; BCP/ACS group), or filled with BCP and then covered by CCP (BCP/CCP group). Results: After 4 and 8 weeks of healing, new bone formation appeared to be lower in the CCP group than in the control group, but the difference was not statistically significant. In both the CCP and BCP/CCP groups, inflammatory cells could be seen after 4 and 8 weeks of healing. Conclusions: Within the limits of this study, CCP exhibited limited osteoconductivity in rabbit calvarial defects and was histologically associated with the presence of inflammatory cells. However, CCP demonstrated its ability to stabilize graft particles and its potential as an effective defect filler in bone augmentation, if the biocompatibility and osteoconductivity of CCP were improved.

토끼 두개골에서 새로 개발된 biphasic calcium phosphate의 골형성 효과 : A pilot study (Bone formation of newly developed biphasic calcium phosphate in rabbit calvarial defect model : A pilot study)

  • 엄유정;홍지연;김성태;이용호;박상현;박준효;조규성;;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제38권2호
    • /
    • pp.163-170
    • /
    • 2008
  • Purpose: Biphasic calcium phosphates have been of great interest recently. Mixing adequate ratios of hydroxyapatite(HA) and beta-tricalcium phosphate($\beta$-TCP) allowed to control the resorption rate without distorting its osteoconductive property. This study evaluated the bone formation effect of newly developed biphasic calcium phosphate(BCP) in calvarial defect of rabbits. Materials and Methods: 6 male New Zealand rabbits were used. Four defects with 8mm in diameter were created on each animal. BCP with HA/$\beta$-TCP ratio of 7:3 and particle size of $0.5{\sim}1.0\;mm$ was used as the test group and bovine bone with $0.25{\sim}1.0\;mm$ particle size, as the control group. Both test and control group materials were randomly implanted in the calvarial defects and were covered witha polymer membrane. The animals were sacrificed after 12, 24, and 48 weeks of implantation under general euthanasia. Resin blocks were obtained and were stained by masson's trichrome for histological observation. Results: Overall results were uneventful without any defect exposure or inflammation. The amount of new bone formation and bone maturity increased with increase in healing period at both groups. New bone in test group was mostly formed along the material particle surrounded by osteoblasts, and observation of osteoblastic stream was also present. Bone maturity increased as it was closer to thedefect margins. Under the same healing period, the test group showed more bone formation than the control group with more stable bovine bone particles remaining even after 48 weeks, whereas considerable resorption took place in BCP. Almost total defect closure was observed in test group with new bone formation in the central part of the defect. However, limited new bone formation was observed in the control group. Conclusion: Within the limits of the study, the present study reveals the newly developed BCP to be a good osteoconductive material. However, further studies are needed to be conducted in a different study model with a larger sample size.

The difference in bone morphogenic protein-2 expression level among Bombyx mori subspecies

  • Ji Hae, Lee;Ji-Hyeon, Oh;Dae-Won, Kim;Seong-Gon, Kim;HaeYong, Kweon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제45권2호
    • /
    • pp.78-83
    • /
    • 2022
  • There are several subspecies of Bombyx mori, whose silk sericin variants differ. Silk sericin can induce bone morphogenic protein-2 (BMP-2) in macrophages, and silk sericin from different species may have different levels of BMP-2 induction ability. In this study, silk sericin from three B. mori subspecies (Baegokjam, Yeonnokjam, and Goldensilk) was prepared. They were administered to RAW264.7 cells and BMP-2 expression level was studied. Bone regeneration was evaluated using a rat calvarial defect model. BMP-2 expression level was the highest in the Baegokjam group. The bone volume in the Baegokjam group was significantly higher than that in the Yeonnokjam group (P = 0.003). In conclusion, sericin from Baegokjam showed higher levels of BMP-2 expression and bone regeneration than those from Yeonnokjam and Goldensilk.

Eight-week healing of grafted calvarial bone defects with hyperbaric oxygen therapy in rats

  • Oh, Seo-Eun;Hu, Kyung-Seok;Kim, Sungtae
    • Journal of Periodontal and Implant Science
    • /
    • 제49권4호
    • /
    • pp.228-236
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the synergistic effect of adjunctive hyperbaric oxygen (HBO) therapy on new bone formation and angiogenesis after 8 weeks of healing. Methods: Sprague-Dawley rats (n=28) were split into 2 groups according to the application of adjunctive HBO therapy: a group that received HBO therapy (HBO group [n=14]) and another group that did not receive HBO therapy (NHBO group [n=14]). Each group was divided into 2 subgroups according to the type of bone graft material: a biphasic calcium phosphate (BCP) subgroup and an Escherichia coli-derived recombinant human bone morphogenetic protein-2-/epigallocatechin-3-gallate-coated BCP (mBCP) subgroup. Two identical circular defects with a 6-mm diameter were made in the right and left parietal bones of each rat. One defect was grafted with bone graft material (BCP or mBCP). The other defect was not grafted. The HBO group received 2 weeks of adjunctive HBO therapy (1 hour, 5 times a week). The rats were euthanized 8 weeks after surgery. The specimens were prepared for histologic analysis. Results: New bone (%) was higher in the NHBO-mBCP group than in the NHBO-BCP and control groups (P<0.05). Blood vessel count (%) and vascular endothelial growth factor staining (%) were higher in the HBO-mBCP group than in the NHBO-mBCP group (P<0.05). Conclusions: HBO therapy did not have a positive influence on bone formation irrespective of the type of bone graft material applied after 8 weeks of healing. HBO therapy had a positive effect on angiogenic activity.

백서 두개골결손모델에서 실크단백과 골형성단백 이식체가 골재생에 미치는 영향 (The effect of silk fibroin and rhBMP-2 on bone regeneration in rat calvarial defect model)

  • 남정훈;노경록;방은오;유우근;강응선;권해용;김성곤;박영주
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권5호
    • /
    • pp.366-374
    • /
    • 2010
  • Introduction: This study evaluated the capability of silk fibroin (SF) and recombinant human bone morphogenetic protein-2 loaded SF (SF-BMP) as a bone defect replacement matrix when grafted in a calvarial bone defect of rats in vivo. Materials and Methods: A total 70 calvarial critical size defects (5.0 mm in diameter) made on 35 adult female Sprague-Dawley rats were used in this study. The defects were transplanted with (1) rhBMP-2 loaded silk fibroin graft (SF-BMP: 0.8+$10\;{\mu}g$), (2) Silk fibroin (SF: $10\;{\mu}g$), and (3) no graft material (Raw). The samples were evaluated with soft x-rays, alkaline phosphatase activity, calcium/phosphate quantification, histological and histomorphometric analysis at postoperative 4 and 8 weeks. Results: The SF-BMP group ($48.86{\pm}14.92%$) had a significantly higher mean percentage bone area than the SF group ($24.96{\pm}11.01%$) at postoperative 4 weeks.(P<0.05) In addition, the SF-BMP group ($40.01{\pm}12.43%$) had a higher % bone area at postoperative 8 weeks than the SF group ($33.26{\pm}5.15%$). The mean ratio of gray scale levels to the host bone showed that the SF-BMP group ($0.67{\pm}0.08$) had a higher mean ratio level than the SF group ($0.61{\pm}0.09$) at postoperative 8 weeks. These differences were not statistically significant.(P=0.168 and P=0.243, respectively) The ratio of the calcium and phosphate contents of the SF-BMP ($0.93{\pm}0.22$) group was lower than that of the SF ($1.90{\pm}1.42$) group at postoperative 4 weeks. However, the SF-BMP group ($0.75{\pm}0.31$) had a higher Ca/$PO_4$ ratio than the SF ($0.68{\pm}0.04$) at postoperative 8 weeks. These differences were not statistically significant.(P=0.126 and P=0.627, respectively) For the bone-specific alkaline phosphatase (ALP) activity, which is recognized as a reliable indicator of the osteoblast function, the SF-BMP ($23.71{\pm}8.60\;U/L$) groups had a significantly higher value than the SF group ($12.65{\pm}6.47\;U/L$) at postoperative 4 weeks.(P<0.05) At postoperative 8 weeks, the SF-BMP ($21.65{\pm}10.02\;U/L$) group had a lower bone-specific ALP activity than the SF group ($16.72{\pm}7.35\;U/L$). This difference was not statistically significant.(P=0.263) For the histological evaluation, the SF-BMP group revealed less inflammation, lower foreign body reactions and higher bone healing than the SF group at postoperative 4 and 8 weeks. The SF group revealed more foreign body reactions at postoperative 4 weeks. However, this immunogenic reaction decreased and the remnant of grafted material was observed at postoperative 8 weeks. For histomorphometric analysis, the SF-BMP group had a significantly longer bone length to total length ratio than those of the SF group at postoperative 4 and 8 weeks.(P<0.05) Conclusion: The rhBMP-2 loaded silk fibroin graft revealed fewer immunoreactions and inflammation as well as more new bone formation than the pure silk fibroin graft. Therefore, silk fibroin may be a candidate scaffold for tissue engineered bone regeneration.

토끼의 두개골내에 형성된 골결손부에서 $HA/{\beta}-TCP$ composite powders의 골형성에 관한 조직학적 연구 (Bone formation effect of $HA/{\beta}-TCP$ composite powders in rabbit calvarial bone defects;Histologic study)

  • 이광호;장현선;박주철;김흥중;김종관;김병옥
    • Journal of Periodontal and Implant Science
    • /
    • 제36권1호
    • /
    • pp.1-14
    • /
    • 2006
  • The purpose of the present study was to evaluate the histologic results of bone cavities that were surgically created in the calvaria of rabbit and filled with $HA/{\beta}-TCP$ composite powders, which had been developed in Korea (Dentium, Korea). Ten young adult rabbits were used. Four defects were surgically produced in calvaria of each rabbit. Each rabbit was anesthetized with Ketamine-HCI (5 mg/kg, Yuhan Cor. Korea) and Xylazine-HCI (1.5 ml/kg, Yuhan Cor. Korea)). An incision was made to the bony cranium and the periosteum was reflected. Using a trephine bur (external diameter: 8 mm, 3i, USA), 4 'through-and-through' bone defects were created with copious irrigation, and classified into 4 groups: control group: no graft materials, experimental group I: normal saline + graft materials: experimental group II: venous blood + graft materials: experimental group III: graft materials only. The defects were randomly filled with graft materials. The defects were closed with resorbable suture material. At the end of the surgical procedure, all animals received a single intramuscular injection of antibiotics Gentamicin (0.1 mg/kg, Dae Sung Microb. Korea). Rabbits were sacrificed with phentobarbital (100 mg/kg) intravenously at 1-, 2-, 4-, 6- and 8-week after. Specimens were treated with hydrochloric acid decalcifying solution (Fisher Scientific, Tustin, CA) and sectioned by bisecting the 8 mm diameter defects. The histologic specimens were prepared in the general method with H & E staining at 6 ${\mu}m$ in thickness. The results were as follows; 1. New bone formation showed from after 2-week of surgery in defect area. As time lapsed, lots of new bone formation and mature bones showed. 2. Histologically, degree of new bone formation could not be discerned among the experimental groups. But, for experimental group II, lots of cells gathered around graft materials after 1-week of surgery, new bone formed slightly faster and than the others at 1-week after. For experimental group I, a few inflammatory finding showed around graft material at after 1-week and after 2-week of surgery. 3. No bone formation did show for control group. Based on histologic results, the new $HA/{\beta}-TCP$ composite powders appeared to act as a scaffolding material for regeneration of osseous defects.

골수 줄기세포와 주사형 MPEG-PCL diblock copolymer를 이용한 조직공학적 골재생 (BONE REGENERATION WITH INJECTABLE MPEG-PCL DIBLOCK COPOLYMER AND BONE MARROW MESENCHYMAL STEM CELL)

  • 정유민;이태형;박정균;김원석;신주희;이의석;임재석;장현석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권1호
    • /
    • pp.9-15
    • /
    • 2010
  • Aim of the study: As an injectable scaffold, MPEG-PCL diblock copolymer was applied in bone tissue engineering. In vivo bone formation was evaluated by soft X-ray, histology based on the rat calvarial critical size defect model. Materials and Methods: New bone formation was evaluated with MPEG-PCL diblock copolymer in rat calvarial critical size bone defect. No graft was served as control. 4, 8 weeks after implantation, gross evidence of bone regeneration was evaluated by histology and soft X-ray analysis. Results: The improved and effective bone regeneration was achieved with the BMP-2 and osteoblasts loaded MPEG-PCL diblock copolymer. Conclusion: It was confirmed that MPEG-PCL temperature sensitive hydrogels was useful as an injectable scaffold in bone regeneration.

Skull Reconstruction with Custom Made Three-Dimensional Titanium Implant

  • Cho, Hyung Rok;Roh, Tae Suk;Shim, Kyu Won;Kim, Yong Oock;Lew, Dae Hyun;Yun, In Sik
    • 대한두개안면성형외과학회지
    • /
    • 제16권1호
    • /
    • pp.11-16
    • /
    • 2015
  • Background: Source material used to fill calvarial defects includes autologous bones and synthetic alternatives. While autologous bone is preferable to synthetic material, autologous reconstruction is not always feasible due to defect size, unacceptable donor-site morbidity, and other issues. Today, advanced three-dimensional (3D) printing techniques allow for fabrication of titanium implants customized to the exact need of individual patients with calvarial defects. In this report, we present three cases of calvarial reconstructions using 3D-printed porous titanium implants. Methods: From 2013 through 2014, three calvarial defects were repaired using custom-made 3D porous titanium implants. The defects were due either to traumatic subdural hematoma or to meningioma and were located in parieto-occipital, fronto-temporo-parietal, and parieto-temporal areas. The implants were prepared using individual 3D computed tomography (CT) data, Mimics software, and an electron beam melting machine. For each patient, several designs of the implant were evaluated against 3D-printed skull models. All three cases had a custom-made 3D porous titanium implant laid on the defect and rigid fixation was done with 8 mm screws. Results: The custom-made 3D implants fit each patient's skull defect precisely without any dead space. The operative site healed without any specific complications. Postoperative CTs revealed the implants to be in correct position. Conclusion: An autologous graft is not a feasible option in the reconstruction of large calvarial defects. Ideally, synthetic materials for calvarial reconstruction should be easily applicable, durable, and strong. In these aspects, a 3D titanium implant can be an optimal source material in calvarial reconstruction.

생체 유래 골 이식재(OCS-B)의 안전성 및 유효성에 관한 연구 (A study on the safety and efficacy of bovine bone-derived bone graft material(OCS-B))

  • 박호남;한상혁;김경화;이상철;박윤정;이상훈;김태일;설양조;구영;류인철;한수부;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.335-343
    • /
    • 2005
  • Inorganic bovine bone mineral has been widely researched as bone substitution materials in orthopedic and oral and maxillofacial application. OCS-B(NIBEC, Korea) is newly-developed inorganic bovine bone mineral. The aim of this study is to evaluate the safety and efficacy of bovine bone-derived bone graft material(OCS-B). Micro-structure of newly-developed inorganic bovine bone mineral(OCS-B) was analyzed by scanning electron microscope(SEM). Round cranial defects with eight mm diameter were made and filled with OCS-B in rabbits. OCS-B was inserted into femoral quadrant muscle in mouse. In scanning electron microscope, OCS-B was equal to natural hydroxyapatite. Rabbits were sacrificed at 2 weeks and 4 weeks after surgery and mice were sacrificed at 1 week and 2 weeks after surgery. Decalcified specimens were prepared and observed by microscope. In calvarial defects, osteoid and new bone were formed in the neighborhood of OCS-B at 2 weeks after surgery. And at 4 weeks after surgery osteoid and new bone bridge formed flourishingly. No inflammatory cells were seen on the surface of OCS-B at 1 week and 2 weeks in mouse experimental group. It is concluded that newly-developed inorganic bovine bone mineral(OCS-B) is a flourishing bone-forming material and biocompatible material.