• 제목/요약/키워드: calvarial bone

검색결과 286건 처리시간 0.028초

Decellularized Non-cross-linked Collagen Membranes for Guided Bone Regeneration in Rabbit Calvarial Defects

  • Jeon, Su-Hee;Lee, Da-Na;Seo, Young-Wook;Park, Jin-Young;Paik, Jeong-Won;Cha, Jae-Kook;Choi, Seong-Ho
    • Journal of Korean Dental Science
    • /
    • 제15권1호
    • /
    • pp.51-60
    • /
    • 2022
  • Purpose: The aim of this study was to evaluate the bio-durability and bone regeneration capacity of the non-cross-linked collagen membrane in rabbit calvarial defect models. Materials and Methods: Four circular defects with 8 mm diameter were made in each of calvarium of 10 male rabbits. The following groups was randomly assigned to each defect - 1) Control, 2) membrane group containing non-cross-linked collagen membrane only (M), 3) bone graft group (B), 4) bone graft with membrane group (B+M). Animals were sacrificed and samples were harvested at 2 weeks (n=5) and 8 weeks (n=5). Histologic sections were prepared and histomorphometric analysis was performed. Result: Histologic results showed well adaptation of the non-cross-linked membrane on each defect and normal healing response at 2 weeks. At 8 weeks, the membranes were partially biodegraded. Histomorphometrically, B and B+M group showed the significantly greater total augmented area (B+M group, 10.44±1.49, P=0.016; B group, 9.13±0.53, P=0.032) and new bone formation (B+M group, 2.89±0.93, P=0.008; B group, 2.85±1.15, P=0.008) compared to control group. Collapsing of the central portion of the membrane, membrane group showed greater value in new bone formation at 8 weeks (1.78±0.68, P=0.032). Conclusion: Within the limitations of this study, the non-cross-linked collagen membrane fabricated using the improved decellularized method was shown to be effective for the regeneration of calvarial bone defects. In addition, prolonged barrier function might be provided using this collagen membrane.

Phosphodiesterase 저해제 Pentoxifylline이 파골세포 분화에 미치는 영향 (Effect of Pentoxifylline, a Phosphodiesterase Inhibitor, on Osteoclast Formation)

  • 김민혜;전윤나;임미정
    • 약학회지
    • /
    • 제48권3호
    • /
    • pp.197-201
    • /
    • 2004
  • Phosphodiesterases (PDEs) are enzymes that degrade intracellular cAMP. In the present study, pentoxifylline, a PDE inhibitor, induced osteoclast formation in co-cultures of mouse bone marrow cells and calvarial osteoblasts. To address the involvement of the osteoclast differentiation factor TNF-related activation-induced cytokine (TRANCE, identical to RANKL, ODF, and OPGL), mouse bone marrow cells and calvarial osteoblasts were co-cultured with pentoxifylline in the presence of OPG, a decoy receptor for TRANCE. The osteoclastogenic effect of pentoxifylline was completely blocked by addition of OPG, suggesting that TRANCE is involved in the osteoclast formation induced by pentoxifylline, Northern blot analysis revealed that pentoxifylline significantly induced TRANCE mRNA expression in calvarial osteoblasts. These results suggests that pentoxifylline regulates TRANCE expression in osteoblasts, which in turn controls osteoclast formation.

귀비탕(歸脾湯)이 파골세포 분화와 조골세포 활성에 미치는 영향 (The Effect of Guibi-tang Water Extract on Osteoclast Differentiation and Osteoblast Proliferation)

  • 최경희;유동열
    • 대한한방부인과학회지
    • /
    • 제27권3호
    • /
    • pp.12-27
    • /
    • 2014
  • Objectives: This study was performed to evaluate the effect of Guibi-tang water extract (GB) on osteoporosis. Methods: We examined the effect of GB on osteoclast differentiation using murine pre-osteoclastic RAW 264.7 cells treated with receptor activator of nuclear factor kappa-B ligand (RANKL). The effect of GB on osteoclast was measured by counting TRAP (+) multinucleated cells and measuring TRAP activity. The mRNA expressions of osteoclastogenesis-related genes (Cathepsin K, MMP-9, TRAP, NFATc1, MITF, TNF-${\alpha}$, IL-6, COX-2) were measured by real-time PCR. We examined the effect of GB on osteoblast proliferation, ALP activity, bone matrix protein synthesis and collagen synthesis using murine calvarial cell. Results: GB decreased the number of TRAP (+) multinucleated cells and inhibited TRAP activity in RANKL-stimulated RAW 264.7 cell. GB decreased the expression of genes related osteoclastogenesis such as Cathepsin K, MMP-9, TRAP, NFATc1, MITF, COX-2 in RANKL-stimulated RAW 264.7 cell. But GB did not decrease the expression of iNOS and increased the expression of TNF-${\alpha}$, IL-6 in RANKL-stimulated RAW 264.7 cell. These genes (iNOS, TNF-${\alpha}$, IL-6) are thought to be related with the inflammatory bone destruction. GB increased cell proliferation of rat calvarial cell and also increased ALP activity in rat calvarial cell. GB did not increase bone matrix protein synthesis but increased collagen synthesis in rat calvarial cell. Conclusions: This study suggests that GB may be effective in treating osteoporosis by inhibiting osteoclast differentiation and its related gene expression and by increasing osteoblast proliferation.

The Effect of Fluoride and Aluminum on Bone Turnover in Mouse Calvarial Culture

  • Ahn, Hye-Won
    • Toxicological Research
    • /
    • 제14권2호
    • /
    • pp.163-169
    • /
    • 1998
  • Fluoride (F), over a narrow concentration range, increases bone formation. Aluminum (Ai) too is biphasic in its action on bone, being mitogenic at very low levels and inhibitory at higher levels. Both F and Al are present in finished drinking water where the chemical interaction of these two agents is well characterized. F and AI, given individually, accumulate preferentially in bone. In addition. in vivo studies have shown that F causes the co-accumulation of Al in bone. Thus, it was necessary to determine the interactive effect of these two agents on bone mitogenesis. Calvaria were obtained from neonatal CD-1 mice and cultured with various concentrations of F (0.05~19 ppm) as NaF, Al (2 ppb~2 ppm) as $AlCl_3$ , or F and Al for 3 days at $37^{\circ}C$ on a rotating roller drum. Alkaline phosphatase activity in calvaria and $\beta$-glucuronidase activity in culture medium were determined as a measures of bone turnover. Alkaline phosphatase activity in calvaria was significantly increased by F (0.05~2 ppm) treatment and $\beta$-glucuronidase activity was slightly increased in the culture medium of calvaria treated with 0.3 ppm Al. The combination of 19 ppm F and 0.3 ppm Al increased alkaline phosphatase activity in calvaria, but did not affect $\beta$-glucuronidase activity, suggesting the interactive effect of fluoride and aluminum on bone turnover.

  • PDF

Rolipram, a Phosphodiesterase 4 Inhibitor, Stimulates Osteoclast Formation by Inducing TRANCE Expression in Mouse Calvarial Cells

  • Cho, Eun-Sook;Yu, Ja-Heon;Kim, Mi-Sun;Yim, Mi-Jung
    • Archives of Pharmacal Research
    • /
    • 제27권12호
    • /
    • pp.1258-1262
    • /
    • 2004
  • Phosphodiesterase (PDE) 4 is an enzyme that degrades intracellular cAMP. In the present study, the effect of rolipram, a specific phosphodiesterase (PDE) 4 inhibitor, on osteoclast formation was investigated. Rolipram induced osteoclast formation in cocultures of mouse bone marrow cells and calvarial osteoblasts. This activity was not observed in the absence of calvarial osteoblasts, suggesting that calvarial osteoblasts are likely target cells of rolipram. Osteoclast formation by rolipram was completely blocked by the addition of osteoprotegerin (OPG), a soluble decoy receptor for the osteoclast differentiation factor, TNF-related activation-induced cytokine (TRANCE, identical to RANKL, ODF, and OPGL). Northern blot analysis revealed the effect of rolipram to be associated with the increased expression of TRANCE mRNA in mouse calvarial osteoblasts. Collectively, these data indicate that PDE4 inhibitor up-regulates the TRANCE mRNA expression in osteoblasts, which in turn controls osteoclast formation.

조골세포내 cAMP 농도 변화가 파골세포 형성에 미치는 영향 (Regulatory Effects of Cyclic AMP on Osteoclast Formation)

  • 전윤나;임미정
    • 약학회지
    • /
    • 제49권1호
    • /
    • pp.109-113
    • /
    • 2005
  • In the present study treatment of IBMX, a phosphodiesterase (PDE) inhibitor, alone induced osteoclast formation in co-cultures of mouse bone marrow cells and calvarial osteoblasts. However, treatment of IBMX in combination with prostaglandin $E_2\;(PGE_2)$ inhibited osteoclast formation in a dose-dependent manner. Among various isozyme-specific PDE inhibitors, a PDE4 specific inhibitor, rolipram, showed similar effects as IBMX on osteoclast formation. To address the involvement of cyclic adenosine monophosphate (cAMP) in osteoclast formation, cAMP concentration in calvarial osteoblasts was investigated. When calvarial osteoblasts were co-cultured with IBMX alone or in combination with $PGE_2$, the patterns of cAMP concentration in calvarial osteoblasts were differ each other suggesting that cAMP in calvarial osteoblasts subtly regulates osteoclast formation.

Four-week histologic evaluation of grafted calvarial defects with adjunctive hyperbaric oxygen therapy in rats

  • Chang, Hyeyoon;Oh, Seo-Eun;Oh, Seunghan;Hu, Kyung-Seok;Kim, Sungtae
    • Journal of Periodontal and Implant Science
    • /
    • 제46권4호
    • /
    • pp.244-253
    • /
    • 2016
  • Purpose: The aim of this study was to characterize the healing in the grafted calvarial defects of rats after adjunctive hyperbaric oxygen therapy. Methods: Twenty-eight male Sprague-Dawley rats (body weight, 250-300 g) were randomly divided into two treatment groups: with hyperbaric oxygen therapy (HBO; n=14) and without HBO (NHBO; n=14). Each group was further subdivided according to the bone substitute applied: biphasic calcium phosphate (BCP; n=7) and surface-modified BCP (mBCP; n=7). The mBCP comprised BCP coated with Escherichia-coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) and epigallocatechin-3-gallate (EGCG). Two symmetrical circular defects (6-mm diameter) were created in the right and left parietal bones of each animal. One defect was assigned as a control defect and received no bone substitute, while the other defect was filled with either BCP or mBCP. The animals were allowed to heal for 4 weeks, during which those in the HBO group underwent 5 sessions of HBO. At 4 weeks, the animals were sacrificed, and the defects were harvested for histologic and histomorphometric analysis. Results: Well-maintained space was found in the grafted groups. Woven bone connected to and away from the defect margin was formed. More angiogenesis was found with HBO and EGCG/BMP-2 (P<0.05). None of the defects achieved complete defect closure. Increased new bone formation with HBO or EGCG/BMP-2 was evident in histologic evaluation, but it did not reach statistical significance in histometric analysis. A synergic effect between HBO and EGCG/BMP-2 was not found. Conclusions: Within the limitations of this study, the present findings indicate that adjunctive HBO and EGCG/BMP-2 could be beneficial for new bone formation in rat calvarial defects.

A Study on Bone Formation & Osteoporosis by Taeyoungion-Jahage Extracts

  • ;;;;;박영덕
    • 대한한방부인과학회지
    • /
    • 제15권4호
    • /
    • pp.45-60
    • /
    • 2002
  • 생쥐의 calvarial osteoblast세포를 분리배양하여 gelatinase생성여부를 골흡수과정에서의 역할을 규명하기 위하여 SDS-PAGE-zymography분석을 한 결과 progelatinase-A를 항속적으로 합성하고 있음을 확인하였다. 생쥐의 osteoblasts를 골재흡수 약물인 PTH, $1,25(OH)_2D_3$, 단핵구배양액 (MCM) 그리고 IL-1으로 자극시키면 gelatinase생산을 촉진하여 콜라겐분해가 증가되었으나, indomethacin과 dexamethasone은 생쥐의 osteoblastic세포의 collagenolysis를 저해하였다. 한편, 골재흡수에 IL-1을 생쥐태아 유래의 장골조직배양 (fetal mouse long bone organ culture)에 처리하자 IL-1 은 골재흡수를 촉진하였다. 더우기, $IL-1{\alpha}$의 농도의존성에 대한 indomethacin과 dexametasone의 영향을 검토한 결과 직선형의 비례커브로 영향을 미쳤다. 이러한 골대사의 지견을 바탕으로 대영전-자하거의 열수추출물의 시험관내 독성검사에서 $1-200\;{\mu}g/ml$의 농도에서는 독성이 없었으며, 또한, $300\;{\mu}g/ml$ 농도에서도 생쥐의 calvarial골에는 독성이 없었다. 대영전-자하거 extract는 PTH (2 units/ml), MCM (5%, v/v), $rhIL-1{\alpha}$ (1 ng/ml) $1,25(OH)_2D_3$ (10 ng/ml)처리에 대해서 그리고 $IL-1{\alpha}$$IL-1{\beta}$-유발 collagenolysis에 대해서도 보호효과가 있었다. 대영전-자하거extract을 1시간동안 전처리와 후처리에서 콜라겐분해에 약간의 보호활성이 있었으며 $IL-1{\alpha}$$IL-1{\beta}$에 의해 유발되는 콜라겐분해에 보호활성이 보였다. 1시간동안 전처리는 콜라겐분해를 감소시키며, 대영전-자하거 extract는 gelatinase효소를 저해하였으며 PTH, $1,25(OH)_2D_3$, $IL-1{\beta}$$IL-1{\alpha}$로 유발된 효소활성화가 저해되었다. 즉, 대영전-자하거 extracts는 $IL-1{\alpha}-$$IL-1{\beta}$에 의해 촉진되는 골재흡수에 효과적이었으며, 비스테로이드성 항염증제제 (indomethacin 과 dexamethasone)에 의한 골재흡수방지 효과와 유사하였다. 이러한 결과는 대영전-자하거extract가 골다공증치료에 효과적임을 나타내는 것이다.

  • PDF