• Title/Summary/Keyword: calcium-carbonate

Search Result 761, Processing Time 0.023 seconds

Effect of corrosive water quality control and corrosion index monitoring in pilot scale pipeline simulator (파일럿 규모 모의관로에서 부식성 수질제어 효과와 부식지수 모니터링)

  • Kim, Do-Hwan;Kim, Yung-Jin;Son, Hee-Jong;Ryou, Dong-Choon;Ahn, Jun-Young;Kim, Cheolyong;Hwang, In-Seong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.183-192
    • /
    • 2018
  • Applicability of corrosion inhibitor was evaluated using pilot scale water distribution pipe simulator. Calcium hydroxide was used as corrosion inhibitor and the corrosion indices of the water were investigated. Corrosion indices, Langelier saturation index (LI) increased by 0.8 and calcium carbonate precipitation potential (CCPP) increased by 9.8 mg/L. This indicated that corrosivity of water decreased by corrosion inhibitor and the effects lasted for 18 days. Optimum calcium hydroxide dose was found to be 3~5 mg/L for corrosion inhibition. We suggest that monitoring of CCPP as well as LI need to be conducted to control corrosivity of water.

Biomedical Materials for Regenerating Bone Tissue Utilizing Marine Invertebrate (해양무척추동물을 활용한 골 조직 재생용 바이오 메디컬 소재)

  • Oh, Gun-Woo;Jung, Won-Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Tissue engineering is an emerging, innovative technology to improve or replace the biological functions of damaged tissues and organs. Scaffolds are important materials for tissue engineering as they support cell attachment, migration, and differentiation. Marine sponges naturally contain scaffolds formed by extracellular matrix proteins (collagen and sponging) and strengthened by a siliceous or calcium carbonate skeleton. Coral skeletons are also derived naturally formed by essential calcium carbonate in the form of aragonite, and are similar to human bone. In addition, collagen extracted from jellyfish is a biosafe alternative to bovine and porcine collagen and gained attention as a potential source for tissue engineering. Moreover, cuttlefish bone is an excellent calcium source and can be used to generate bio-synthetic calcium phosphate. It has become a natural candidate for biomimetic scaffolds. This review describes the use of natural products derived from marine invertebrates for applications in bone tissue engineering based on studies from 2008 to 2014.

Morphological Analysis of Engineered PCC by Gas-Liquid Mixing Conditions (기체-액체 혼합조건에 따른 Engineered PCC의 형태학적 분석)

  • Lee, Tai-Ju;Seo, Jin-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.113-120
    • /
    • 2011
  • Precipitated calcium carbonate(PCC), particularly calcite crystal, is extensively used as a pigment, filler or extender in various industries such as paper, paint, textile, detergents, adhesives, rubber and plastics, food, cosmetics, and biomaterials. PCC is conventionally produced through the gas-liquid carbonation process, which consists on bubbling gaseous $CO_2$ through a concentrated calcium hydroxide slurry. This study is aimed to find some factors for controlling the morphology of engineered PCC in lab-scaled mixing batch. The experimental designs were based on temperature variables, $Ca(OH)_2$ concentration, $CO_2$ flow rate, and electrical conductivity. The model of engineered PCC morphology was finally controlled by adjustment of electrical conductivity(6.0~7.0 mS/cm) and $Ca(OH)_2$ concentration(10 g/L). Orthorhombic calcite crystals were mostly created at high concentration and electrical conductivity conditions because the increased ratio of $Ca^{2+}$ and $CO{_3}^{2-}$ ions affects the growth rate of orthorhombic faces. Excess calcium spices were contributed to the growth of faces in calcium carbonate crystal, and the non-stoichiometric reaction was occurred between $Ca^{2+}$ and $CO{_3}^{2-}$ ions during carbonation process.

Fabrication of Lotus Nickel Through Thermal Decomposition Method of Compounds under Ar Gas Atmosphere

  • Kim, Sang-Youl;Hur, Bo-Young;Nakajima, Hideo
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.270-275
    • /
    • 2009
  • Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.

Effects of Nano-sized Calcium Carbonate on Physical and Optical Properties of Paper (나노사이즈 탄산칼슘이 종이의 물리·광학적 특성에 미치는 영향)

  • Park, Jung-Yoon;Lee, Tai-Ju;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.4
    • /
    • pp.1-10
    • /
    • 2014
  • In papermaking industry, inorganic fillers are widely used for the purpose of improving opacity, brightness, printability, uniformity and dimensional stability. They are also useful for production costs and energy savings. In the past, inorganic fillers in papermaking industry only focused on micro-scale but recently, new trials on nano-powdered technology are applying. Even nano-powdered fillers are rapidly utilized for improving the optical and surface properties in coating and surface sizing, there still have some problems in wet-end process due to poor dispersibility and retention. In this study, nano-particled calcium carbonate was produced by milling the PCC and its applicability between micro sized and nano sized calcium carbonated was compared in wet-end process, and finally the sheet properties were evaluated. Nano-PCC was not retained in sheet structure without applying retention system, but with retention system nano-powdered PCC was absorbed on fiber surface with expanding the fiber networks. The application of PAM-bentonite system has resulted in high ash retention and bulky structure for copier paper, and good optical properties in brightness and opacity. However, it required to solve the weakness of low tensile property due to interruption of hydrogen bonding by nano fillers.

Development of Corrosion Evaluation Index Calculation Program of Raw Water and Evaluation on Corrosivity of Tap Water using the Calcium Carbonate Saturation Index (상수원수의 부식평가 지수 산정 프로그램 개발 및 탄산칼슘 포화지수에 의한 수돗물의 부식성 평가)

  • Hwang, Byung-Gi;Woo, Dal-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.177-185
    • /
    • 2009
  • In this study, we developed the program to calculate the corrosion evaluation index for examining the corrosivity of raw water. When it was applied to the Han river and Nakdong river system, sulfuric acid ion, which accelerated corrosion, was higher in Nakdong river system than Han river system while calcium and hardness, which restrained corrosion, was the same way. Summarization of the LI and CCPP calculation result by the developed corrosion evaluation model showed that water quality of Han river system had strong tendency to corrode (is strongly corrosive). Moreover, this study evaluated the corrosivity of calcium carbonate saturation index by adding the chemicals to tap water. Saturation status was maintained in the order of $Ca(OH)_2$ > NaOH > ${Na_2}{CO_3}$ > $CaCO_3$ in the case of LI and RI.

Controlling Factors of Particle Size Distribution during Formation of Cubic and Colloidal Calcium Carbonate Compounds (Cubic형과 Colloid형 탄산칼슘 합성에서의 입경제어 연구)

  • Ahn, Ji-Whan;Park, Chan-Hoon
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.65-72
    • /
    • 1996
  • Colloidal calcium wrbonate(diametcr 0.02-0 09 m~wja s developed to maintain the mamenl of pnriide formatio~>w ~lhoutsurlace trealment. The control factors of particle size and optimum condiliuna for compound fam*tition has not bccn studiedyet. This shldy war aimed at developing a method fur compounding colloidal calcium carbonfcte to cnl~hol cubic calciumcarbonate, and then compounding the b-o types oI precipitated calcium wrbonatc under optimum wndilrans Calc~umhydroxide was calcinated at 1, lWC far two hours, md then hydrated for 30 minutes at t i i O rprn and ambiznt temperahlle.Two-liter suspension was subjected to the contact with carbon dioxide at l5"C, 600 ipxn and C0= injection in the rate of 1 Umin Two types of dcium carbonate(cuhic calcium carbonatc(0 24.9 pm) md collnidd calcium mhnnate (0.02-0 09 pm))were compounded by "wing the concentrations of calcium oxide and ihe suspension were compounded. It was found that theoptimum concentrations of each suspensions were 5 wt % and 2.5 \I*.% respectively. ' h c key control factor af thc parlicle slzcdislribution was the concenkation al the suspension. The size of compounded particles was measured by a Zcla S k r 'fieaverage particle size of the cubic calcium carbonate aas 223.4 nm(0.223 pm), and that of thc colloidal a~lciumc arbonate was93.6 nm (0.093 km). Ihe particle sizc was evenly cantlolled on a stdblc basis in an H, O reaction system.asis in an H, O reaction system.

  • PDF

The Comparison of Analytical Methods for Gypsum and Gypsum Slurry (석고 및 석고 슬러리에 대한 분석방법의 비교)

  • Kim, Kyeongsook;Yang, Seugran;Park, Hyunjoo;Lim, Chunsik
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.158-165
    • /
    • 2000
  • The purity of gypsum and quantitation of impurities of flue gas gypsum will not only play an important role in deciding of the optimal condition during a trial run of FGD (flue gas desulfurization), but also can be utilized in quality control of gypsum. The purity of gypsum can be determined from combined water, sulfur trioxide and calcium concentration. We found that the thermal analysis by TGA (thermogravimetric analysis) was the most accurate and convenient method to determine the purity of gypsum. This method will be done in a hour and the results were reproducible. On the other hand, the best way of the analysis of impurities in gypsum was fusion method using $LiBO_2$ as a fusion agent. We also determined the amount of $CO_2$ gas to analyze magnesium carbonate and calcium carbonate contents. The analyses of combined water by TGA, fusion method followed by ICP-AES (inductively coupled plasmaatomic emission spectroscopy) and determination of $CO_2$ amount can lead to more accurate and convenient method for gypsum analysis.

  • PDF

The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator (가성알칼리와 탄산나트륨을 혼합한 활성화제를 사용한 알칼리 활성화 고로슬래그 모르타르의 강도 특성)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.745-752
    • /
    • 2012
  • This paper studies the effect of the compressive strength for combined alkali-activated slag mortars. The effect of activators such as alkali type and dosage factor on the strength was investigated. The alkalis combinations made using five caustic alkalis (sodium hydroxide (NaOH, A series), calcium hydroxide ($Ca(OH)_2$, B series), magnesium hydroxide ($Mg(OH)_2$, C series), aluminum hydroxide ($Al(OH)_3$, D series), and potassium hydroxide (KOH, E series)) with sodium carbonate ($Na_2CO_3$) were evaluated. The mixtures were combined in different dosage at 1M, 2M, and 3M. The study results showed that the compressive strength of combined alkali-activated slag mortars tended to increase with increasing sodium carbonate. The strength of combined alkali-activated slag mortars was better than that of control cases (without sodium carbonate). The result from scanning electron microscopy (SEM) analysis confirmed that there were reaction products of calcium silicate hydrate (C-S-H) and alumina-silicate gels from combined alkali-activated slag specimens.