• Title/Summary/Keyword: calcium processing

Search Result 204, Processing Time 0.027 seconds

Hydrolysis of Non-cellulose of Cotton Fiber by Lipase Treatment (리파제를 이용한 면직물 비셀룰로스 가수분해)

  • Lee, So-Hee;Song, Wha-Soon;Kim, Hye-Rim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.7
    • /
    • pp.1075-1081
    • /
    • 2008
  • Eco-friendly processing using enzymes has been focused in textile industry in order to reduce environmental pollutions. This paper was suggested to hydrolyze non-cellulose, such as fats and waxes in cotton fabrics by lipase treatment. Enzymatic treatment conditions were controlled according to pH, temperature, enzyme concentration, and treatment time. The physical properties of the lipase-treated cotton fabrics were evaluated by measuring weight loss, moisture regain and dyeing properties. The surface morphology of lipase-treated cotton fabrics were observed by SEM. As a result, the optimum conditions for the lipase treatment were at pH 4.2, temperature 50$^{\circ}C$, concentration 50%, and treatment time 90 minutes. Calcium chloride and Triton X-100 were effective auxiliaries in lipase treatment.

Packaging of dairy products: an overview

  • Yoo, SeungRan
    • Food preservation and processing industry
    • /
    • v.15 no.2
    • /
    • pp.23-31
    • /
    • 2016
  • Dairy products, including milk, cheese, cream, yogurt, and butter, constitute excellent sources of essential nutrients such as calcium, proteins, and vitamin D; therefore, nutritionists recommend a constant daily dietary intake of dairy products. Packaging is an important feature that ensures high-quality products are delivered to consumers; different packaging materials and forms are required depending on the products. Packaging forms include pouches for butter, cheese, and milk powder; cartons for liquid, frozen, and coagulated milk; packets for pasteurized liquid milk; bottles for milkshakes and other liquid products; and cups for frozen and coagulated products. The increase in mobile lifestyles among consumers will lead to smaller households and greater preference for convenience, which will promote individual and smaller packaging for dairy products. This article reviews the development of packaging materials and forms, packaging requirements, and future considerations for the packaging of dairy products.

  • PDF

The Use of Oyster Shell Powders for Water Quality Improvement of Lakes by Algal Blooms Removal

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Hyun-Jae;Choi, Woo Jeong;Ramakrishna, Chilakala;Lee, Hyoung-Woo;Lee, Shin-Haeng;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In this year, Koreans have a shortage in agricultural and drinking water due to severe algal blooms generated in major lakes. Waste oyster shells were obtained from temporary storage near the workplace at which oysters were separated from their shells. Heating ($1000^{\circ}C$ for 1 h in air) was employed to convert raw oyster shell powders into calcium oxide powders that reacted efficiently with phosphorus and nitrogen to remove algal blooms from eutrophicated wastewater. As the dispersed amount of heated oyster shell powders was increased, water clarity and visual light penetration were improved. Coagulation, precipitation and carbonation process of the heated oyster shell powders in a water purifier facilitated removal of eutrophication nutrient such as phosphorus and nitrogen, which is both beneficial and economically viable. $CO_2$ implantation by carbonation treatment not only produced thermodynamically stable CaO in oyster shells to derive precipitated calcium carbonate (PCC) but also accelerated algal removal by activation of coagulation and precipitation process. The use of oyster shell powders led to a mean reduction of 97% in total phosphate (T-P), a mean reduction of 91% in total nitrogen (T-N) and a maximum reduction of 51% in chemical oxygen demand (COD), compared with the total pollutant load of raw algal solution. Remarkable water quality improvement of algal removal by heated oyster shell powders and PCC carbonation treatment will allow utilization as water resources to agricultural or industrial use.

The Effect of Various Humectants on Equilibrium Moisture Content and Storage Stability of Seasoned Squid (여러가지 보습제가 조미오징어 평형수분함량에 미치는 영향)

  • Rhee, Chul;Kang, Chang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.704-710
    • /
    • 1988
  • This study was, firstly, to investigate water holding capacity in terms of variation of moisture sorption isotherms of seasoned squid treated with sodium lactate, glycerol, propylene glycol, sorbitol, mannitol, sodium benzoate, potassium sorbate and calcium propionate, and secondly, the effect of humectant treatments on storage stability was studied. The criteria for storage stability was based on three quality factors, namely, lipid oxiations, color development by non-enzymatic browning reactions and lipid oxidation, and mold growth. The effect of humectants on equilibrium moisture content was in the following increasing order; mannitol < sorbitol < sodium lactate < propylene glycol < glycerol. The experimental data indicated that sodium lactate has, in practice, potentially positive effect on processing of seasoned squid. During the storage period of 60 days, TBA values increased in all samples tested as humectants concentrations increased up to 10%. However, in the range of 1-7% sodium lactate treatment, the degree of lipid oxidation, browning reactions and mild growth were not high enough to affect the quality of seasoned squid, when compared with conventionally manufactured ones.

  • PDF

Estimation of Rheological Properties of Highly Concentrated Polymer Bonded Explosive Simulant by Microstructure Analysis (미세구조 해석을 통한 고농축 복합화약 시뮬란트의 유변물성 예측)

  • Lee, Sangmook;Hong, In-Kwon;Lee, Jae Wook;Shim, Jung Seob
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.225-231
    • /
    • 2014
  • The rheological properties of highly concentrated polymer bonded explosive simulant were studied by using poly(ethylene-co-vinyl acetate) with 30 and 60% vinyl acetate (VA) content as a binder, respectively. Calcium carbonate and Dechlorane, whose physical properties are similar to resarch department explosive (RDX)'s, were used as fillers. The suspensions were mixed in a batch melt mixer and it was possible to fill 75 v% at maximum. From dynamic mechanical analysis, Dechlorane showed higher interaction with binder resins than that with calcium carbonate fillers. The effects of microstructural change on the rheological properties of the suspensions were investigated by a plate-plate rheometer with constant shear rate and constant shear stress modes, respectively. The theoretical maximum packing fraction of EVA31/Dechlorane suspension obtained from Krieger-Dougherty equation was 70 v% and it was thought that 2000 Pa was proper shear stress condition for this melt processing.

Comparative analysis of nutritional values of riverine and marine hilsa (Tenualosa ilisha; Hamilton, 1882)

  • Debnath, Sumon;Latifa, Gulshan Ara;Bhowmik, Shuva;Islam, Shanzida;Begum, Mohajira
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.258-264
    • /
    • 2018
  • A study was performed to analyze the biochemical composition (moisture, protein, fat, ash, salt value, iron, calcium and phosphorus) of raw and salted hilsa. Pure (with less than 1% impurities) and clean dry salt was used (fish weight : salt weight = 3 : 1) for salting the hilsa. The nutrients values of the hilsa from two different regions were significantly (p < 0.05) varied. The biochemical compositions were also different before and after the processing of the hilsa. Riverine hilsa contains relatively more moisture ($57.79{\pm}0.51%$) and protein ($15.65{\pm}0.50%$) than marine hilsa. Fat ($16.39{\pm}0.51%$) and salt ($1.80{\pm}0.14%$) contents are higher in marine hilsa; whereas the ash ($7.88{\pm}0.35%$) content was higher in the riverine hilsa. Minerals like iron ($4.92{\pm}0.32mg/100g$) and calcium ($480.02{\pm}6.73mg/100g$) remain in large amounts in the marine hilsa, but the phosphorus ($112.36{\pm}4.40mg/100g$) content remains at a high level in the riverine hilsa. In addition, the protein (raw condition, $18.54{\pm}0.46%$, riverine; $17.12{\pm}0.42%$, marine and salted condition, $32.54{\pm}0.5%$, riverine; $27.31{\pm}0.48%$, marine) and fat (raw condition, $15.41{\pm}0.46%$, riverine; $19.07{\pm}0.51%$, marine and salted condition, $11.58{\pm}0.39%$, riverine; $13.6{\pm}0.55%$, marine) contents were higher in the abdominal region of the riverine and marine hilsa both in the raw and salted conditions than in the head and caudal region.

Effect of Oyster Shell Calcium Powder on the Quality of Restructured Pork Ham

  • Choi, Jung-Seok;Lee, Hyun-Jin;Jin, Sang-Keun;Lee, Hyun-Joo;Choi, Yang-Il
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.372-377
    • /
    • 2014
  • This study was conducted to evaluate the effects of oyster shell calcium powder (OSCP) as a substitute for phosphates in curing agent, on the quality of restructured pork ham. Restructured pork ham was processed under six treatment conditions: T1 (no additives), T2 (0.3% sodium tripolyphosphate), T3 (1.5% NaCl+0.5% whey protein), T4 (1.5% NaCl+0.5% whey protein+0.15% OSCP), T5 (1.5% NaCl+0.5% whey protein+0.3% OSCP), and T6 (1.5% NaCl+0.5% whey protein+0.5% OSCP). Addition of OSCP significantly increased the ash content and pH of restructured pork ham (p<0.05), but did not affect the cooking loss and water holding capacity values of restructured pork ham. Addition of OSCP had no effect on Hunter a and b surface color values of restructured pork ham, but did decrease the Hunter L surface color value (p<0.05). The addition of 0.5% OSCP showed significantly higher chewiness and springiness values of restructured pork ham, compared with the addition of phosphates (p<0.05). In conclusion, the addition of OSCP combined with low NaCl and 0.5% whey protein can be considered a viable substitute for phosphates in the curing agent, when processing restructured pork ham.

Intracisternal Administration of Voltage Dependent Calcium Channel Blockers Attenuates Orofacial Inflammatory Nociceptive Behavior in Rats

  • Won, Kyoung-A.;Park, Sang-H.;Kim, Bo-K.;Baek, Kyoung-S.;Yoon, Dong-H.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.36 no.2
    • /
    • pp.43-50
    • /
    • 2011
  • Voltage dependent calcium channel (VDCC), one of the most important regulator of $Ca^{2+}$ concentration in neuron, play an essential role in the central processing of nociceptive information. The present study investigated the antinociceptive effects of L, T or N type VDCC blockers on the formalin-induced orofacial inflammatory pain. Experiments were carried out on adult male Sprague-Dawley rats weighing 220-280 g. Anesthetized rats were individually fixed on a stereotaxic frame and a polyethylene (PE) tube was implanted for intracisternal injection. After 72 hours, 5% formalin ($50 \;{\mu}L$) was applied subcutaneously to the vibrissa pad and nociceptive scratching behavior was recorded for nine successive 5 min intervals. VDCC blockers were administered intracisternally 20 minutes prior to subcutaneous injection of formalin into the orofacial area. The intracisternal administration of 350 or $700{\mu}g$ of verapamil, a blocker of L type VDCC, significantly decreased the number of scratches and duration in the behavioral responses produced by formalin injection. Intracisternal administration of 75 or $150 \;{\mu}g$ of mibefradil, a T type VDCC blocker, or 11 or $22\; {\mu}g$ of cilnidipine, a N type VDCC blocker, also produced significant suppression of the number of scratches and duration of scratching in the first and second phase. Neither intracisternal administration of all VDCC blockers nor vehicle did not affect in motor dysfunction. The present results suggest that central VDCCs play an important role in orofacial nociceptive transmission and a targeted inhibition of the VDCCs is a potentially important treatment approach for inflammatory pain originating in the orofacial area.

Browning and Pungent Taste Reduction Techniques in Onion Extract (양파추출물의 갈변 및 매운맛 억제기술)

  • Kim, Hee Sun;Kim, Myung Hwan
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.360-364
    • /
    • 2009
  • The onion extractions of MIX treatment (5% $\beta$ cyclodextrin+1% calcium chloride+1% soluble starch mixture solution) using hot water (100${^{\circ}C}$ and 80${^{\circ}C}$) and ultrasonic treatment (25${^{\circ}C}$) incresed L values and decreased a and b values apart from the extraction methods. Extent of the browning reaction as caused by the MIX treatment (0.093) following 100${^{\circ}C}$ water extraction resulted in as low as 31% O.D. level, as compared to the control(0.296). Analysis of the pyruvic acid showed that the control had higher content of pyruric acid than MIX-treated samples. The MIX treatment had lower intensities and higher preferences of browning color and pungency taste compared to the control. The total and coliform microbial counts increased continuously during storage period, while the MIX treatment reduced the number of viable cells. Finally, it was concluded that the MIX treatment was highly effective in suppressing the undesirable browning color and pungent taste after processing, and the microbes increment during storage.

Discoloration of teeth due to different intracanal medicaments

  • Afkhami, Farzaneh;Elahy, Sadaf;Nahavandi, Alireza Mahmoudi;Kharazifard, Mohamad Javad;Sooratgar, Aidin
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.10.1-10.11
    • /
    • 2019
  • Objectives: The objective of this study was to assess coronal discoloration induced by the following intracanal medicaments: calcium hydroxide (CH), a mixture of CH paste and chlorhexidine gel (CH/CHX), and triple antibiotic paste (3Mix). Materials and Methods: Seventy extracted single-canal teeth were selected. Access cavities were prepared and each canal was instrumented with a rotary ProTaper system. The specimens were randomly assigned to CH, CH/CHX, and 3Mix paste experimental groups (n = 20 each) or a control group (n = 10). Each experimental group was randomly divided into 2 subgroups (A and B). In subgroup A, medicaments were only applied to the root canals, while in subgroup B, the root canals were completely filled with medicaments and a cotton pellet dipped in medicament was also placed in the pulp chamber. Spectrophotometric readings were obtained from the mid-buccal surface of the tooth crowns immediately after placing the medicaments (T1) and at 1 week (T2), 1 month (T3), and 3 months (T4) after filling. The ${\Delta}E$ was then calculated. Data were analyzed using 2-way analysis of variance (ANOVA), 3-way ANOVA, and the $Scheff{\acute{e}}$ post hoc test. Results: The greatest color change (${\Delta}E$) was observed at 3 months (p < 0.0001) and in 3Mix subgroup B (p = 0.0057). No significant color change occurred in the CH (p = 0.7865) or CH/CHX (p = 0.1367) groups over time, but the 3Mix group showed a significant ${\Delta}E$ (p = 0.0164). Conclusion: Intracanal medicaments may induce tooth discoloration. Use of 3Mix must be short and it must be carefully applied only to the root canals; the access cavity should be thoroughly cleaned afterwards.