• Title/Summary/Keyword: calcineurin inhibitors

Search Result 23, Processing Time 0.029 seconds

Impact of calcineurin inhibitors on rat glioma cells viability

  • Seong, Jeong Hun;Park, Woo Yeong;Paek, Jin Hyuk;Park, Sung Bae;Han, Seungyeup;Mun, Kyo-Cheol;Jin, Kyubok
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.2
    • /
    • pp.105-108
    • /
    • 2019
  • Background: Although kidney transplantation outcomes have improved dramatically after using calcineurin inhibitors (CNIs), CNI toxicity continues to be reported and the mechanism remains uncertain. Here, we investigated the neurotoxicity of CNIs by focusing on the viability of glioma cells. Methods: Glioma cells were treated with several concentrations of CNIs for 24 hours at $37^{\circ}C$ and their cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: Exposure to 0, 0.25, 0.5, 2.5, 5.0, and 10.0 mM concentrations respectively showed 100%, 64.3%, 61.3%, 68.1%, 62.4%, and 68.6% cell viability for cyclosporine and 100%, 38.6%, 40.8%, 43.7%, 37.8%, and 43.0% for tacrolimus. The direct toxic effect of tacrolimus on glioma cell viability was stronger than that of cyclosporine at the same concentration. Conclusion: CNIs can cause neurological side effects by directly exerting cytotoxic effects on brain cells. Therefore, we should carefully monitor the neurologic symptoms and level of CNIs in kidney transplant patients.

CoMFA and CoMSIA on the Inhibition of Calcineurin-NFAT Signaling by Blocking Protein-Protein Interaction with N-(4-Oxo-1(4H)-naphthalenylidene)benzenesulfonamide Derivatives

  • Myung, Pyung-Keun;Park, Kyung-Yong;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1941-1945
    • /
    • 2005
  • To raises the possibility of designing effective inhibitors, 3D-QSAR for the inhibition of calcineurin-NFAT signaling by new N-(4-oxo-1(4H)-naphthalenylidene benzenesulfonamide derivatives as inhibitors of intracellular protein-protein interactions were studied using CoMFA and CoMSIA methodology. The three templates, N-(4-oxo-1(4H)-naphthalenylidene)benzenesulfonamide (A), benzenesulfonamide (B) and 4-oxo-1(4H)-naphthalenylidene (C) were selected to improve the statistic of the present 3D-QSAR models. The best models with combination of standard field in CoMFA, and steric field and electrostatic field in CoMSIA derived from the template, B and C, because most of the compounds tend not to be aligned in template A. From the based on the CoMFA and CoMSIA contour maps, the $R_1$ and $R_2$ groups on 4-oxo-1(4H) naphthalenylidene ring are steric favor. The ortho position on the benzenesulfonyl ring is steric disfavor and the meta position is steric favor. In addition, the oxygene atom of carbonyl group will have better inhibition activities as it has a negative charge favor. From these findings, we can conclude that the analyses of the contour maps provided insight into possible modification of molecules for effective inhibitiors.

A Phenylpropanoid Glycoside as a Calcineurin Inhibitor Isolated from Magnolia obovata Thunb.

  • Lee, Won Jeong;Moon, Jae Sun;Kim, Sung In;Bahn, Yong-Sun;Lee, Hanna;Kang, Tae Hoon;Shin, Heung Mook;Kim, Sung Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1429-1432
    • /
    • 2015
  • To identify plant-derived cell signaling inhibitors with antifungal properties, a twocomponent screening system using both wild-type Cryptococcus neoformans and a calcineurin mutant was employed owing to their counter-regulatory actions on the Hog1 mitogenactivated protein kinase and calcineurin pathways. Of the 2,000 plant extracts evaluated, a single bioactive compound from M. obovata Thunb. was found to act specifically on the calcineurin pathway of C. neoformans. This compound was identified as magnoloside A, and had potent antifungal activities against various Cryptococcus strains with minimum inhibitory concentration values ranging from 1.0 to 4.0 μg/ml.

Inhibition of the Calcineurin Pathway by Two Tannins, Chebulagic Acid and Chebulanin, Isolated from Harrisonia abyssinica Oliv.

  • Lee, Won Jeong;Moon, Jae Sun;Kim, Sung In;Kim, Young Tae;Nash, Oyekanmi;Bahn, Yong-Sun;Kim, Sung Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1377-1381
    • /
    • 2014
  • In order to discover and develop novel signaling inhibitors from plants, a screening system was established targeting the two-component system of Cryptococcus neoformans by using the wild type and a calcineurin mutant of C. neoformans, based on the counter-regulatory action of high-osmolarity glycerol (Hog1) mitogen-activated protein kinase and the calcineurin pathways in C. neoformans. Among 10,000 plant extracts, that from Harrisonia abyssinica Oliv. exhibited the most potent inhibitory activity against C. neoformans var. grubii H99 with fludioxonil. Bioassay-guided fractionation was used to isolate two bioactive compounds from H. abyssinica, and these compounds were identified as chebulagic acid and chebulanin using spectroscopic methods. These compounds specifically inhibited the calcineurin pathway in C. neoformans. Moreover, they exhibited potent antifungal activities against various human pathogenic fungi with minimum inhibitory concentrations ranging from 0.25 to over $64{\mu}g/ml$.

Inhibition of the Calcineurin Pathway by Two Flavonoids Isolated from Miliusa sinensis Finet & Gagnep.

  • Lee, Won Jeong;Moon, Jae Sun;Kim, Young Tae;Bach, Tran The;Hai, Do Van;Kim, Sung Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1696-1700
    • /
    • 2016
  • In order to discover plant-derived signaling pathway inhibitors with antifungal properties, a two-component screening system utilizing the calcineurin and Hog1 mitogen-activated protein kinase pathways responsible for the virulence networks of Cryptococcus neoformans was employed, owing to the counter-regulatory actions of these pathways. Of the 1,000 plant extracts tested, two bioactive compounds from Miliusa sinensis were found to act specifically on the calcineurin pathway of C. neoformans. These compounds, identified as pashanone and 5-hydroxy-6,7-dimethoxyflavanone, exhibited potent antifungal activities against various human pathogenic fungi with minimum inhibitory concentration values ranging from 4.0 to >128 μg/ml.

Review of two immunosuppressants: tacrolimus and cyclosporine

  • HyunJong Lee;Hoon Myoung;Soung Min Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.6
    • /
    • pp.311-323
    • /
    • 2023
  • Immunosuppressants are vital in organ transplantation including facial transplantation (FT) but are associated with persistent side effects. This review article was prepared to compare the two most used immunosuppressants, cyclosporine and tacrolimus, in terms of mechanism of action, efficacy, and safety and to assess recent trials to mitigate their side effects. PubMed and Google Scholar queries were conducted using combinations of the following search terms: "transplantation immunosuppressant," "cyclosporine," "tacrolimus," "calcineurin inhibitor (CNI)," "efficacy," "safety," "induction therapy," "maintenance therapy," and "conversion therapy." Both immunosuppressants inhibit calcineurin and effectively down-regulate cytokines. Tacrolimus may be more advantageous since it lowers the likelihood of acute rejection, has the ability to reverse allograft rejection following cyclosporine treatment, and has the potential to reinnervate nerves. Meanwhile, graft survival rates seem to be comparable for the CNIs. To avoid nephrotoxicity, various immunosuppressants other than CNIs have been studied. Despite averting nephrotoxicity, these medications show increases in acute rejection or other types of adverse effects compared to CNIs. FT has been a topic of interest for oral and maxillofacial surgeons, and the postoperative usage of immunosuppressants is crucial for the long-term prognosis of FT. As contemporary transplantation regimens incorporate novel medications along with CNIs, further research is required.

Treatment of steroid-resistant pediatric nephrotic syndrome

  • Kang, Hee-Gyung
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.8
    • /
    • pp.317-321
    • /
    • 2011
  • Children who suffer from steroid-resistant nephrotic syndrome (SRNS) require aggressive treatment to achieve remission. When intravenous high-dose methylprednisolone fails, calcineurin inhibitors, such as cyclosporine and tacrolimus, are used as the first line of treatment. A significant number of patients with SRNS progress to end-stage renal disease if remission is not achieved. For these children, renal replacement therapy can also be problematic; peritoneal dialysis may be accompanied by significant protein loss through the peritoneal membrane, and kidney allograft transplantation may be complicated by recurrence of SRNS. Plasmapheresis and rituximab were initially used for treatment of recurrent SRNS after transplantation; these are now under consideration as rescue therapies for refractory SRNS. Although the prognosis of SRNS is complicated and unfavorable, intensive treatment in the early stages of the disease may achieve remission in more than half of the patients. Therefore, timely referral of pediatric SRNS patients to pediatric nephrology specialists for histological and genetic diagnosis and treatment is highly recommended.

Direct Block of Cloned $K^+$ Channels, Kv1.5 and Kv1.3, by Cyclosporin A, Independent of Calcineurin Inhibition

  • Choi, Bok-Hee;Hahn, Sang-June
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.353-361
    • /
    • 2005
  • The interaction of cyclosporine A (CsA), an immunosuppressant, with rat brain Kv1.5 (Kv1.5) channels, which were stably expressed in Chinese hamster ovary cells, was investigated using the whole-cell patch-clamp technique. CsA reversibly blocked Kv1.5 currents at +50 mV in a reversible concentrationdependent manner with an apparent $IC_{50}$ of 1.0μM. Other calcineurin inhibitors (cypermethrin, autoinhibitory peptide) had no effect on Kv1.5 and did not prevent the inhibitory effect of CsA. Fast application of CsA led to a rapid and reversible block of Kv1.5, and the onset time constants of the CsA-induced block were decreased in a concentration-dependent manner. The CsA-induced block of Kv1.5 channels was voltage-dependent, with a steep increase over the voltage range of channel opening. However, the block exhibited voltage independence over the voltage range in which channels were fully activated. The rate constants for association and dissociation of CsA were $7.0{\mu}M{-1}s^{-1}$ and $8.1s^{-1}$, respectively. CsA slowed the deactivation time course, resulting in a tail crossover phenomenon. Block of Kv1.5 by CsA was use-dependent. CsA also blocked Kv1.3 currents at +50 mV in a reversible concentration-dependent manner with an apparent $IC_{50}$ of $1.1{\mu}M$. The same effects of CsA on Kv1.3 were also observed in excised inside-out patches when applied to the internal surface of the membrane. The present results suggest that CsA acts directly on Kv1.5 currents as an open-channel blocker, independently of the effects of CsA on calcineurin activity.

Korean Propolis enhances both the presentation of DC and macrophage activation

  • Han, Shin-Ha;Yun, Yun-Ha;Song, Young-Cheon;Lee, Sook-Yeon;Ha, Nam-Joo;Kim, Kyung-Jae
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.202.3-203
    • /
    • 2003
  • Calcineurin inhibitors, cyclosporine A (CsA) and tacrolimus (FK506), have been studied extensively regarding their effects on T lymphocytes, but their effects on dendritic cells (DC) are relatively unknown. DC can really capture Ag from dead and dying cells for presentation to MHC class I-restricted CTL. The main targets for the immunosuppressive calcinerin inhibitors, FK506 and CsA. have been considered to be activated T cells, but not antigen presenting cells (APCs). (omitted)

  • PDF

Linarin enhances both the presentation of exogenous particulate antigen in association of Class I Major Histocompatibility antigen and macrophage activation

  • Han, Shin-Ha;Yun, Yun-Ha;Son, Han-Shik;Lee, Sook-Yeon;Ha, Nam-Joo;Kim, Kyung-Jae
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.203.1-203.1
    • /
    • 2003
  • Calcineurin inhibitors, cyclosporine A (CsA)and tacrolimus (FK506), have been studied extensively regarding their effects on T lymphocytes, but their effects on dendritic cells (DC) are relatively unknown. DC can really capture Ag from dead and dying cells for presentation to MHC class I-restricted CTL. The main targets for the immunosuppressive calcinerin inhibitors, FK506 and CsA, have been considered to be activated T cells, but not antigen presenting cells (APCs). (omitted)

  • PDF