DOI QR코드

DOI QR Code

CoMFA and CoMSIA on the Inhibition of Calcineurin-NFAT Signaling by Blocking Protein-Protein Interaction with N-(4-Oxo-1(4H)-naphthalenylidene)benzenesulfonamide Derivatives

  • Myung, Pyung-Keun (College of Pharmacy, Chungnam National University) ;
  • Park, Kyung-Yong (Research Center for Transgenic Cloned Pigs, Chungnam National University) ;
  • Sung, Nack-Do (Division of Applied Biology & Chemistry, Chungnam National University)
  • Published : 2005.12.20

Abstract

To raises the possibility of designing effective inhibitors, 3D-QSAR for the inhibition of calcineurin-NFAT signaling by new N-(4-oxo-1(4H)-naphthalenylidene benzenesulfonamide derivatives as inhibitors of intracellular protein-protein interactions were studied using CoMFA and CoMSIA methodology. The three templates, N-(4-oxo-1(4H)-naphthalenylidene)benzenesulfonamide (A), benzenesulfonamide (B) and 4-oxo-1(4H)-naphthalenylidene (C) were selected to improve the statistic of the present 3D-QSAR models. The best models with combination of standard field in CoMFA, and steric field and electrostatic field in CoMSIA derived from the template, B and C, because most of the compounds tend not to be aligned in template A. From the based on the CoMFA and CoMSIA contour maps, the $R_1$ and $R_2$ groups on 4-oxo-1(4H) naphthalenylidene ring are steric favor. The ortho position on the benzenesulfonyl ring is steric disfavor and the meta position is steric favor. In addition, the oxygene atom of carbonyl group will have better inhibition activities as it has a negative charge favor. From these findings, we can conclude that the analyses of the contour maps provided insight into possible modification of molecules for effective inhibitiors.

Keywords

References

  1. Thomson, A. W. In Therapeutic Immunosuppression; Kluwer Academic Publishers: 2001; p 130
  2. Bohlin, L. Phytochem. Rev. 1995, 37, 137
  3. Pawson, T.; Scott, J. D. Science 1997, 278, 2075 https://doi.org/10.1126/science.278.5346.2075
  4. Shaw, K. T.; Ho, A. M.; Raghavan, A.; Kim, J.; Jain, J.; Park, J.; Sharma, S.; Rao, A.; Hogan, P. G. Proc. Natl. Acad. Sci., USA 1995, 92, 11205 https://doi.org/10.1073/pnas.92.24.11205
  5. Beals, C. R.; Clipstone, N. A.; Ho, S. N.; Crabtree, G. R. Genes. Dev. 1997, 11, 824 https://doi.org/10.1101/gad.11.7.824
  6. Aramburu, J.; Garcia-Cozar, F.; Raghavan, A.; Okamura, H.; Rao, A.; Hogan, P. G. Mol. Cell. 1998, 1, 627 https://doi.org/10.1016/S1097-2765(00)80063-5
  7. Aramburu, J.; Yaffe, M. B.; Lopez-Rodríguez, C.; Cantley, L. C.; Hogan, P. G.; Rao, A. Science 1999, 285, 2129 https://doi.org/10.1126/science.285.5436.2129
  8. Roehrl, M. H.; Kang, S.; Aramburu, J.; Wagner, G.; Rao, A.; Hogan, P. G. Proc. Natl. Acad. Sci. USA 2004, 101, 7544
  9. Kubinyi, H., In 3D-QSAR in Drug Design; Theory, Methods and Applications; Escom: Leiden, 1993
  10. Cramer, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959 https://doi.org/10.1021/ja00226a005
  11. Klebe, G. Prospect Drug Discovery Des. 1998, 12, 87 https://doi.org/10.1023/A:1017025803403
  12. Klebe, G.; Abraham, U. J. Comput. Aid. Mol. Des. 1999, 13, 1
  13. Bohm, M.; Sturzebecher, J.; Klebe, G. J. Med. Chem. 1999, 42, 458 https://doi.org/10.1021/jm981062r
  14. Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303, St. Louis, MO., 63144-2913 U.S.A., http://www.tripos.com/Bookshelf/qsar/
  15. Kerr, R. Biophys. J. 1964, 67, 1501 https://doi.org/10.1016/S0006-3495(94)80624-1
  16. Purcell, W. P.; Singer, J. A. J. Chem. Eng. Data. 1967, 12, 235 https://doi.org/10.1021/je60033a020
  17. Klebe, G. In 3D QSAR Drug Design, Theory, Methods and Applications: Structural Alignment of Molecules; Kubinyi, H., Ed.; ESCOM: Leiden, 1993; pp 173-199
  18. Marshall, G. R.; Barry, C. D.; Bosshard, H. E.; Dammkoehler, R. A.; Dunn, D. A. In Computer-Assisted Drug Design: The Conformational Parameter in Drug Design; Active Analog Approach; Olsen, E. C.; Christoffersen, R. E., Eds.; American Chemical Society: Washington, D. C. 1979; pp 205-226
  19. Raichurkar, A. V.; Kulkarni, V. M. J. Med. Chem. 2003, 46, 4419 https://doi.org/10.1021/jm030016a
  20. Stahle, L.; Wold, S. Prog. Med. Chem. 1988, 25, 291 https://doi.org/10.1016/S0079-6468(08)70281-9
  21. Geladi, P. J. Chemon. 1998, 2, 231
  22. Cramer, R. D., III.; Bunce, J. D.; Patterson, D. E. Quant. Struct. Act. Relat. 1988, 7, 18 https://doi.org/10.1002/qsar.19880070105
  23. Hansch, C.; Steward, A. R. J. Med. Chem. 1964, 7, 691 https://doi.org/10.1021/jm00336a001
  24. Fujita, T. In Progress in Physical Organic Chemistry; Taft, R., Ed.; Wiely & Sons: 1983; Vol. 14, pp 75-113

Cited by

  1. 2D-QSAR and HQSAR of the inhibition of calcineurin-NFAT signaling by blocking protein-protein interaction with N-(4-oxo-1 (4H)-naphthalenylidene)benzenesulfonamide analogues vol.30, pp.8, 2007, https://doi.org/10.1007/BF02993966
  2. Prediction of the Antagonistic Activity of Aryl Benzyl Ethers against LTD4 by Using 3D-CoMFA Model Developed with Pranlukast Analogues vol.27, pp.7, 2006, https://doi.org/10.5012/bkcs.2006.27.7.1025
  3. Attractive Sulfur...π Interaction between Fluorinated Dimethyl Sulfur (FDMS) and Benzene vol.28, pp.6, 2005, https://doi.org/10.5012/bkcs.2007.28.6.959
  4. QM and Pharmacophore based 3D-QSAR of MK886 Analogues against mPGES-1 vol.29, pp.3, 2008, https://doi.org/10.5012/bkcs.2008.29.3.647