• Title/Summary/Keyword: cable pre-tension

Search Result 24, Processing Time 0.025 seconds

Load deformation characteristics of shallow suspension footbridge with reverse profiled pre-tensioned cables

  • Huang, Ming-Hui;Thambiratnam, David P.;Perera, Nimal J.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.375-392
    • /
    • 2005
  • Cable supported structures offer an elegant and economical solution for bridging over long spans with resultant low material content and ease of construction. In this paper, a model of shallow cable supported footbridge with reverse profiled pre-tensioned cables is treated and its load deformation characteristics under different quasi-static loads are investigated. Effects of important parameters such as cable sag and pre-tension are also studied. Numerical results performed on a 3D model show that structural stiffness of this bridge (model) depends not only on the cable sag and cross sectional areas of the cables, but also on the pre-tension in the reverse profiled cables. The tension in the top supporting cables can be adjusted to a high level by the pre-tension in the reverse profiled bottom cables, with the total horizontal force in the bridge structure remaining reasonably constant. It is also evident that pre-tensioned horizontally profiled cables can greatly increase the lateral horizontal stiffness and suppress the lateral horizontal deflection induced by eccentric vertical loads.

Determination of Member Force Ratios for Self-equilibrium State of Multi-Layered Cable Dome Type Structures (다층 케이블 돔형 구조물의 자기평형을 위한 부재력 비율 결정)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.75-82
    • /
    • 2013
  • For each cable component in a cable dome structure, pre-tension is needed for stability of whole the structure. The summation of these pre-tension at each joint should be zero to achieve the self equilibrium structure. The first step in cable dome structure analysis is to find the ratio of pre-tension in each member which can produce a stable and structure on self-equilibrium. In this paper, a new method based on the basic principle of closed force polygon for equilibrium system is proposed for the determination of self-equilibrium mode of cable dome structure. A single layer cable dome and two multi layer type domes have been analyzed. The ratios of cable members are determined by the presented method, and check the validation of the results by numerical calculation.

Force monitoring of Galfan cables in a long-span cable-truss string-support system based on the magnetic flux method

  • Yuxin Zhang;Xiang Tian;Juwei Xia;Hexin Zhang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.261-281
    • /
    • 2023
  • Magnetic flux sensors are commonly used in monitoring the cable force, but the application of the sensors in large diameter non-closed Galfan cables, as those adopted in Yueqing Gymnasium which is located in Yueqing City, Zhejiang Province, China and is the largest span hybrid space structure in the world, is seldom done in engineering. Based on the construction of Yueqing Gymnasium, this paper studies the cable tension monitoring using the magnetic flux method across two stages, namely, the pre-calibration stage before the cable leaves the rigging factory and the field tension formation stage of the cable system. In the pre-calibration stage in the cable factory, a series of 1:1 full-scale comparative tests were carried out to study the feasibility and relability of this kind of monitoring method, and the influence on the monitoring results of charging and discharging voltage, sensor location, cable diameter and fitting method were also studied. Some meaningful conclusions were obtained. On this basis, the real-time cable tension monitoring system of the structure based on the magnetic flux method is established. During the construction process, the monitoring results of the cables are in good agreement with the data of the on-site pressure gauge.The work of this paper will provide a useful reference for cable force monitoring in the construction process of long-span spatial structures.

The Dynamic Analysis of Cable Dome Structures (케이블 돔의 구조물의 동적 비선형 해석)

  • Seo, Jun-Ho;Han, Sang-Eul;Lee, Sang-Ju
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.113-122
    • /
    • 2004
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic load, because cable domes are flexible structures whose bending stiffness is very small and self-weight is very light. Therefore, in this paper, the Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of the $Newmark-{\beta}$ Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

Geometrically Nonlinear Dynamic Analysis of Cable Domes (케이블 돔의 기하학적 비선형 동적해석)

  • 한상을;서준호;김종범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.61-68
    • /
    • 2003
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic loads, because cable domes are flexible structures whose stiffness is very small and self-weight is very light. Therefore, in this paper, Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of Newmark-β Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

Experimental study of Hydraulic Cable Connection Systems with Re-tensioning and Wireless Monitoring (재긴장과 무선 모니터링이 가능한 유압식 케이블 접합부시스템의 실험에 대한 연구)

  • Kim, Min-Su;Lee, Ki-Hak;Kim, Seong-Beom;Lee, Sung-Min;Baek, Ki-Youl
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.71-79
    • /
    • 2011
  • Due to the self-equilibrium status of the cable system, the loss of the tensioning in the cable system results in other cables carrying larger tension forces than those initially calculated by structural engineers. Also, turn-buckle systems, which have been widely used to pre-tension and/or re-tension the cables, are limited to use for small cables and to provide a rough estimation for tension forces. In this study, the re-tensioning cable connection systems were developed to overcome the problems mentioned above. The main objective of the proposed system is to re-tension large cables and measure the exact amount of tension forces of the cable systems. This connection system is also combined with the wireless signal monitoring module so that engineers are able to measure the tension forces any place where the internet is available. This paper presents the development of the re-tensioning cable connection systems and experiment using the real-scale cable systems to verify the fe-tensioning and signal monitoring systems.

Nonlinear analysis of cable-supported structures with a spatial catenary cable element

  • Vu, Tan-Van;Lee, Hak-Eun;Bui, Quoc-Tinh
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.583-605
    • /
    • 2012
  • This paper presents a spatial catenary cable element for the nonlinear analysis of cable-supported structures. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the equilibrium equation. As a result, the element stiffness matrix and nodal forces are determined, wherein the effect of self-weight and pretension are taken into account. In the case of the initial cable tension is given, an algorithm for form-finding of cable-supported structures is proposed to determine precisely the unstressed length of the cables. Several classical numerical examples are solved and compared with the other available numerical methods or experiment tests showing the accuracy and efficiency of the present elements.

Unsupervised one-class classification for condition assessment of bridge cables using Bayesian factor analysis

  • Wang, Xiaoyou;Li, Lingfang;Tian, Wei;Du, Yao;Hou, Rongrong;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • Cables are critical components of cable-stayed bridges. A structural health monitoring system provides real-time cable tension recording for cable health monitoring. However, the measurement data involve multiple sources of variability, i.e., varying environmental and operational factors, which increase the complexity of cable condition monitoring. In this study, a one-class classification method is developed for cable condition assessment using Bayesian factor analysis (FA). The single-peaked vehicle-induced cable tension is assumed to be relevant to vehicle positions and weights. The Bayesian FA is adopted to establish the correlation model between cable tensions and vehicles. Vehicle weights are assumed to be latent variables and the influences of different transverse positions are quantified by coefficient parameters. The Bayesian theorem is employed to estimate the parameters and variables automatically, and the damage index is defined on the basis of the well-trained model. The proposed method is applied to one cable-stayed bridge for cable damage detection. Significant deviations of the damage indices of Cable SJS11 were observed, indicating a damaged condition in 2011. This study develops a novel method to evaluate the health condition of individual cable using the FA in the Bayesian framework. Only vehicle-induced cable tensions are used and there is no need to monitor the vehicles. The entire process, including the data pre-processing, model training and damage index calculation of one cable, takes only 35 s, which is highly efficient.

Inelastic Nonlinear Analysis of Structures with Under -Tension System (언더텐션 시스템이 적용된 구조물의 비탄성 비선형 거동 해석)

  • Park, Duk-Kun;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.91-97
    • /
    • 2009
  • This study presents geometric nonlinear and material analysis of under-tension structure using Total Lagrangian and Updated Lagrangian method. In the regard, the under-tension system enables the load of upper part to carry to the end of beam by pre-tensional force in cable. The under-tension system on lower part of the structure is applied in order to reduce the deflection and size of member. This study is performed with conforming of the effect by pretension value in the cable and applying loading. Dead and Live loads are supposed to apply nodal on the top member. The member force and deflection of the structure are with MIDAS and ADINA.

  • PDF

Dynamic analysis of ROV cable considering the coupling motion of ROV cable systems

  • Cho, Kyu Nam;Song, Ha Cheol;Hong, Do Chun
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.429-440
    • /
    • 2004
  • Remotely Operated Vehicle of 6000-meters is a new conceptual equipment made to replace the manned systems for investigating the deep-sea environment, and all of the ROV systems in operational condition strongly depend on the connecting cables. In this point of view dynamics of the ROV cable system is very important for operational and safety aspects as a cable generally encounters great tension. Researches have been executed on this problem, and most of papers have been mainly focused on the operational condition of ROV system in deep sea. This paper presents the dynamic cable response analysis during ROV launching condition rather than the operational one in order to provide the design guide of a ROV cable system in this circumstance, considering the coupling effects between cable and wave-induced ship motion. To obtain the variations of cable tensions during a ROV launching, a pre-stressed harmonic response analysis was carried out. Wave-induced tensions of the cable during ROV launching were obtained in real sea states using FE modeling, and the basic design guide of a ROV cable system was obtained.