• Title/Summary/Keyword: cable fire

Search Result 140, Processing Time 0.026 seconds

Design of Measuring System for Insulation Resistance and Humidity in High-Power XLPE Cables in Operation and the Relationship Between Insulation Resistance and Humidity in the Oversheath (운전 중인 고전력 XLPE 케이블의 절연저항과 습도의 측정 시스템 설계 및 방식층 절연저항과 습도의 상관관계)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.179-184
    • /
    • 2016
  • The usual way used by electric power stations to deliver high levels of generated power is via 6.6kV XLPE (or CV) cables. Depending on the manufacturing technique, installation environment, and usage conditions, the deterioration processes of the power cables start from the instant of operation. Cable junctions may break down in three years from the start of operation due to the manufacturing or construction defects. Otherwise they should be in good working order for 20-30 years. When the cable system (the cable itself and cable junctions combined) deteriorates, fire accidents happen due to the dielectric breakdowns. We have invented a device to monitor the deteriorating status of cables at Korean Western Power Co. Ltd. located in Taean, Chungcheongnam-do province. In this paper, we introduce the device hardware. Using the device, we have measured the insulation resistance and humidity in the sheath of the cables. We present, in analysed results, the effect of humidity on insulation resistance in cable sheaths.

The Electromagnetic Shield Properties of 600V class Low Voltage Cable Using Carbon Fiber (탄소섬유를 이용한 600V 이하 저압 케이블의 전자파 차폐특성)

  • Kim, Young-Seok;Kim, Taek-Hee;Kim, Chong-Min;Shong, Kil-Mok;Kim, Ji-Yeon;Kim, Won-Seok;Kwag, Dong-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.243-248
    • /
    • 2017
  • This study used general carbon fibers(CF), which can be utilized for a low voltage cable screen, as well as metal-coated carbon fibers(MCF) to make cables and analyzed the properties of electromagnetic effectiveness. Both braid CF and MCF cables with 3,000 strands, 16 spindles, and braid density of 90% or over were adopted. The tape-type MCF specimens were spread into a tape(width: 15mm) using a hot melt to make a cable. The shield effectiveness was measured up to the 1GHz range in accordance with IEC 62153-4-6; braid shielded cables featured a superior shielding effect at 63dB than tape-type shielded cables. That was because the tape-type shielded cable has relatively more gaps and holes between carbon fibers than the braid type, resulting in a more inflow or emission of electromagnetic waves. In the case of braid cables, the characteristics of their electromagnetic waves were enhanced, with higher spindles and higher conductivity of carbon fibers. The shield effectiveness of the MCF shielded cable, however, was lower than that of tin-coated one.

An Investigation of Quantitative Risk Assessment Methods for the Thermal Failure in Targets using Fire Modeling (화재모델링을 이용한 목표 대상물의 열적 손상에 대한 정량적 위험성 평가방법의 고찰)

  • Yang, Ho-Dong;Han, Ho-Sik;Hwang, Cheol-Hong;Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.116-123
    • /
    • 2016
  • The quantitative risk assessment methods for thermal failure in targets were studied using fire modeling. To this end, Fire Dynamics Simulator (FDS), as a representative fire model, was used and the probabilities related to thermal damage to an electrical cable were evaluated according to the change in fire area inside a specific compartment. 'The maximum probability of exceeding the damage thresholds' adopted in a conservative point of view and 'the probability of failure' including the time to damage were compared. The probability of failure suggested in the present study could evaluate the quantitative fire risk more realistically, compared to the maximum probability of exceeding the damage thresholds with the assumption that thermal damage occurred the instant the target reached its minimum failure criteria in terms of the surface temperature and heat flux.

The cause analysis of explosion on junction termination of 345kV cable (345 kV 케이블 종단접속부에서의 폭발사고 원인분석)

  • Shong, Kil-Mok;Bang, Sun-Bae;Kim, Chong-Min;Kim, Young-Seok;Choi, Myeong-Il
    • Congress of the korean instutite of fire investigation
    • /
    • 2010.12a
    • /
    • pp.63-79
    • /
    • 2010
  • It is found to the arc trace on the junction termination of 345kV cable. According to the analysis of the cable material is judged to be good. Manufacturing and design problems are not considered. In construction defects, it was estimated to the low level of insulation oil. In the majority of the arc trace appeared XLPE is found. However, there is no Soots mark, yellow band has not been confirmed, not associated with a radial arc of the spider leg is not evidence. In other opinions, void, contamination or jut are not found on the inside of XLPE. Thus, by the attachment of the impurities in surface of XLPE insulation is judged to the breakdown.

  • PDF

Analysis of Regional Relative Humidity Environment for Dehumidification System Efficiency of Suspension Bridge Cable (현수교 케이블 송기시스템 효율화를 위한 지역별 상대습도 환경 분석)

  • Seo, Dong-Woo;Kim, Ga Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.88-94
    • /
    • 2018
  • This study examined the safety of a cable stayed bridge caused by damage to the cable system. Many cable-supported bridges, including cable-stayed bridges and suspension bridges, have been constructed on the Korean peninsula. This requires efficient maintenance and management because this structure has complex structural components and systems. This large structure also often faces risks either from manmade causes or natural phenomena. In 2015, the cables on one cable-stayed bridge in South Korea was struck by lightning, which led to a fire on the cables. These cables were damaged, which put the bridge at risk. This bridge was back in use after a few weeks of investigations and replacements of the cables but this was done at enormous social and economic expense. After this event, risk-based management for infrastructure is required by public demand. Therefore, this study examined the risks on the cable system due to potential damage. In this paper, a one cable-stayed bridge in South Korea was selected and its safety was investigated based on the damage scenarios of cable system for efficient and prompt management, and to support decision making. FEM analysis was conducted to evaluate the safety of the bridges after damage to the cable system.

A Study on the Fire Risk of Black Box Wiring in Motor Vehicle (자동차의 블랙박스 와이어링 화재 위험성에 관한 연구)

  • Kang, Sin-Dong;Kim, Ju-Hee;Choi, Jun-Pyo;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.22-28
    • /
    • 2017
  • According to the National Fire Data System (NFDS), more than 5,000 vehicle fires have occurred every year for the last 10 years. Vehicle fires are primarily caused by mechanical (breaking system and engine), electrical (wiring and battery), and chemical (oil and fuel gas leakage) problems. The electrical factor has increased with the installation of driver convenience equipment. For example, today, the black box is widely used to provide video data recording of motor vehicle accidents. The black box consists of a front camera, rear camera, and wires. The black box wires are directly connected to the junction box or fuse box from the start battery that operates to provide normal on power supplying for engine stop. It is extremely dangerous when the wires short circuit due to insulation aging, mechanical and electrical stress, etc. In this study, the black box wiring fire risk have been analyzed and investigated when the steady state and abnormal operations, and under the following conditions: wiring arrangements with a high temperature condition, insulation aging, poor contact, and short circuits. The results showed that black box wiring short circuits had a higher fire risk than the other fire hazard elements. To prevent fire hazards caused by black box wiring, the black boxes must be installed by qualified service personnel. Do not modify the wiring, remove the fuse and secure the wiring using cable ties or insulation tape.

Analysis of Sheath Temperatures and Load Currents Dependent on Conductor Temperatures in Live 6kV CV Cables Operating at a Power Station (발전소에서 운전 중인 활선 6 kV CV 단심 cable의 도체온도에 따른 피복 표면온도 및 부하전류 특성 분석)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.189-195
    • /
    • 2017
  • The only method used in the power stations in order to deliver generated electric power is 6 kV XLPE (or CV) single core cables. Among many kinds of accidents happening in the power stations, the outbreak of fire due to the deterioration of live cables causes enormous socioeconomic losses. From the installation of the cables, the management and diagnose should be thoroughly made. Even though it differs depending on the installations and usage conditions, the cross-sectional area of cables is in shortage. The excessive allowable temperature caused from the current causes the deterioration of cables. In order to prevent an unexpected breakdown of live cables, we have invented a device to monitor and diagnose the status of cables. We have installed our device in the Korea Western Power Co., Ltd.. In this paper, we present our research results in situ that we have obtained by measuring the temperature of sheath, changing with the surrounding circumstances, especially ambient temperatures. We also show our study results of characteristics for temperature of sheath surface and load current at the ambient temperatures of $40^{\circ}C-10^{\circ}C$.

A Study on Combustion Characteristics in each Coating Thickness of Fire Retardant Paints (난연도료의 도포 두께별 연소특성에 관한 연구)

  • Kim, Hong;Park, Hyung-Ju
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.36-41
    • /
    • 2003
  • This experimental study shows the combustion characteristics for each coating thickness of water and oil paint which are used as fire retardant paints that prevent fire propagation through cables in underground culverts and trays. To evaluate combustion characteristics, smoke density(ASTM E 662) and Limited Oxygen Index(ASTM D 2863) experiment method was used. As the results of this study, the combustion characteristics of fire retardant paints produced the following : (a) The molt suitable coating thickness of fire retardant paint was 1.5∼2.0 mm in water paint and 0.2 mm in oil paint. (b) Flaming method in experiments of smoke density were found to be higher than Non-flaming method. (c) Water paint has the fire retardant effect and characteristics better than oil paint in measurement results of smoke density and oxygen index. (d) The oxygen index of water and oil fire retardant was able to know that it was satisfied a standard (30 or above).

Optimized Design of Mobile Communication Antenna In the Underground Area (지하공간에서의 이동통신 셀 설계에 관한 연구)

  • Oh, Sung-Kyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • In the signals-shadowed areas, In order to providing the suitable signals reception level repeaters are used for relay the signals. Repeater receives the weak signals and amplifies it up to required power level, The amplified signals get radiated by the various methods. Both antenna distribution and LCX(Leakage Coaxial Cable) are typical methods in the repeater and BTS signals radiation. Their applications are depended on the environment condition and frequency band. Generally the antenna distribution are used for the mobile telecommunication networks which use the higher frequency band than 500MHz. On the other side, LCX distribution is suitable to the frequency band under 500MHz. The network plan of repeater in FM, T-DMB, Fire Radio and Internal subway communication network are the typical LCX application fields. Cell planning with repeaters are based on the free space loss, LCX connection loss and actual field data. The actual field data can be the most important factor to design the network planning.

An Experimental Study on the Fire Monitoring System for Tunnel Using SMA and Fiber Optic Cable (형상기억합금과 광케이블을 이용한 터널의 화재감지 시스템 개발에 관한 실험적 연구)

  • Hwang, Ji-Hyun;Park, Ki-Tae;Lee, Kyu-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.128-134
    • /
    • 2014
  • Recently, design and construction of street tunnels tend to focus on cost reduction and preservation of nature. Accordingly, research is actively being carried out to quickly detect fires when they occur in tunnels, which have partially closed structures. Among such research, fire detection methods using optical fiber sensors have a wide bandwidth and fast transmission speed, while using light as a medium. Therefore, it does not receive electrical interference and there is almost no loss of information during transmission, while also having little noise as well. In relation to this, a fire monitoring system that can accurately detect the location of fires in real time using shape memory alloy and optical cables was developed in this study. In order to verify the developed method, light loss measurement test was conducted according to indoor temperature changes, while also conducting fire simulation tests by installing test beds in common underground zones with different external environments of temperature and distance. Upon carrying out experiments, the fire monitoring system developed in this study was found to be able to detect fires in long distance sections in real time.