• Title/Summary/Keyword: cable failure

Search Result 179, Processing Time 0.03 seconds

쳬계신뢰성에 기초한 사장교의 안전도 및 내하력 평가 (System Reliability-Based Safety and Capacity Evaluation of Cable-Stayed Bridges)

  • 조효남;이승재;임종권;김보헌
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.105-112
    • /
    • 1996
  • A practical approach for the assessment of system reliability-based safety and load carring capacity under vehicle traffics is proposed for the realistic evaluation of safety and rating of cable-stayed bridges. A partial event tree analysis model incorporating major critical failure paths is suggested as a practical tool for the system reliability analysis and system reliability-based capacity rating. The proposed approach for the system reliability analysis and system reliability-based rating is applied to the safety assessment of the Jindo Bridge which is one of two existing cable-stayed bridges in Korea. The results of analyses at the system level based on the system reliability are compared with those at the element level.

  • PDF

대형교량 케이블 장력 측정을 위한 자기센서 개발 (Development of Magnetic Sensor for Measurement of the Cable Tension of Large Scale Bridge)

  • 박해원;안봉영;이승석;김종우
    • 비파괴검사학회지
    • /
    • 제27권4호
    • /
    • pp.339-344
    • /
    • 2007
  • 대형 구조물을 지탱하고 있는 케이블은 항상 높은 장력으로 당겨지고 있기 때문에 교량에 과도한 하중이 가해지면 안전에 큰 영향을 미칠 수 있다. 설계 시 하중을 고려하지만 안전관리 측면서 지속적인 감시의 필요성은 매우 크다. 교량 지지용 케이블이 강자성 재료로 구성되어 있고, 강자성 재료는 자구의 운동이 외부 장력에 매우 민감하기 때문이 케이블의 비투자율을 모니터링하면 현재 장력의 크기를 예측할 수 있다. 본 논문에서는 현장에서의 장력측정용 센서의 정확한 성능 평가를 위한 표준 장력 교정 시스템 개발을 목표로 기반 연구를 수행하고 있다. 즉 교정된 로드셀을 기준으로 시험 케이블에 정화한 힘을 가할 수 있는 시스템을 제작하였으며, 자체 제작한 장력 측정용 자기적 센서를 시험 케이블에 설치하고 케이블에 가한 장력에 따라 센서 출력을 정량적으로 분석하였으며, 주위의 환경이 미치는 영향도 함께 분석하였다.

계통연계형 에너지저장시스템의 위험우선순위 분석 (Analysis of Risk Priority Number for Grid-connected Energy Storage System)

  • 김두현;김성철;박전수;김은진;김의식
    • 한국안전학회지
    • /
    • 제31권2호
    • /
    • pp.10-17
    • /
    • 2016
  • The purpose of this paper is to deduct components that are in the group of highest risk(top 10%). the group is conducted for classification into groups by values according to risk priority through risk priority number(RPN) of FMEA(Failure modes and effects analysis) sheet. Top 10% of failure mode among total potential failure modes(72 failure modes) of ESS included 5 BMS(battery included) failure modes, 1 invert failure mode, and 1 cable connectors failure mode in which BMS was highest. This is because ESS is connected to module, try, and lack in the battery part as an assembly of electronic information communication and is managed. BMS is mainly composed of the battery module and communication module. There is a junction box and numerous connectors that connect these two in which failure occurs most in the connector part and module itself. Finally, this paper proposes RPN by each step from the starting step of ESS design to installation and operation. Blackouts and electrical disasters can be prevented beforehand by managing and removing the deducted risk factors in prior.

Analytical model for estimation of digging forces and specific energy of cable shovel

  • Stavropoulou, M.;Xiroudakis, G.;Exadaktylos, G.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.23-51
    • /
    • 2013
  • An analytical algorithm for the estimation of the resistance forces exerted on the dipper of a cable shovel and the specific energy consumed in the cutting-loading process is presented. Forces due to payload and to cutting of geomaterials under given initial conditions, cutting trajectory of the bucket, bucket's design, and geomaterial properties are analytically computed. The excavation process has been modeled by means of a kinematical shovel model, as well as of dynamic payload and cutting resistance models. For the calculation of the cutting forces, a logsandwich passive failure mechanism of the geomaterial is considered, as has been found by considering that a slip surface propagates like a mixed mode crack. Subsequently, the Upper-Bound theorem of Limit Analysis Theory is applied for the approximate calculation of the maximum reacting forces exerted on the dipper of the cable shovel. This algorithm has been implemented into an Excel$^{TM}$ spreadsheet to facilitate user-friendly, "transparent" calculations and built-in data analysis techniques. Its use is demonstrated with a realistic application of a medium-sized shovel. It was found, among others, that the specific energy of cutting exhibits a size effect, such that it decreases as the (-1)-power of the cutting depth for the considered example application.

Diagnosis of Medium Voltage Cables for Nuclear Power Plant

  • Ha, Che-Wung;Lee, Do Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1369-1374
    • /
    • 2014
  • Most accidents of medium-voltage cables installed in nuclear power plants result from the initial defect of internal insulators or the initial failure due to poor construction. However, as the service years of plants increase, the possibility of cable accidents is also rapidly increases. This is primarily caused by electric, mechanical, thermal, and radiation stresses. Recently, much attention is paid to the study of cable diagnoses. To date, partial discharge and Tan${\delta}$ measurements are known as reliable methods to diagnose the aging of medium-voltage cables. High frequency partial discharge measurement techniques have been widely used to diagnose cables in transmission and distribution systems. However, the on-line high frequency partial discharge technique has not been used in the nuclear power plants because of the plant shutdown risk, degraded measurement sensitivity, and application problems. In this paper, the partial discharge measurement with a portable device was tried to evaluate the integrity of the 4.16kV and 13.8kV cable lines. The test results show that the high detection sensitivity can be achieved by the high frequency partial discharge technique. The present technique is highly attractive to diagnose medium voltage cables in nuclear power plants.

중전압 전선의 통계적 수명예측 계산과 응용 방법 (Statistical Life Expectancy Calculation of MV Cables and Application Methods)

  • 조종은;이온유;김상봉;김강식
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.61-68
    • /
    • 2022
  • In this paper, the change history of various types of MV (Medium Voltage) cables was investigated. In addition, the statistical life expectancy of each type was calculated by using the operation data and the failure data. For cut-off year, 10 years was applied, and realistically applicable statistical life expectancy was calculated by correcting the cause of failure entered by mistake. The life expectancy of FR-CNCO-W was calculated as 51.2 years, CNCV-W 38.1 years, and CNCV 31.4 years and the overall average is 33.8 years. Currently, the life expectancy of TR CNCV-W is 29.4 years, but it is estimated that the lifespan will be extended if failure data is accumulated. As a result, it is expected that life expectancy results can be applied to Asset Management System (AMS) in the future.

전력용 케이블 시편에서 전기트리 발생원에 따른 부분방전 분포 특성 및 발생원 분류기법 비교 (Analysis of PD Distribution Characteristics and Comparison of Classification Methods according to Electrical Tree Source in Power Cable)

  • 박성희;정해은;임기조;강성화
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.57-64
    • /
    • 2007
  • One of the cause of insulation failure in power cable is well known by electrical treeing discharge. This is occurred for imposed continuous stress at cable. And this event is related to safety, reliability and maintenance. In this paper, throughout analysis of partial discharge(PD) distribution when occurring the electrical tree, is studied for the purpose of knowing of electrical treeing discharge characteristics according to defects. Own characteristic of tree will be differently processed in each defect and this reason is the first purpose of this paper. To acquire PD data, three defective tree models were made. And their own data is shown by the phase-resolved partial discharge method (PRPD). As a result of PRPD, tree discharge sources have their own characteristics. And if other defects (void, metal particle) exist internal power cable then their characteristics are shown very different. This result Is related to the time of breakdown and this is importance of cable diagnosis. And classification method of PD sources was studied in this paper. It needs select the most useful method to apply PD data classification one of the proposed method. To meet the requirement, we select methods of different type. That is, neural network(NN-BP), adaptive neuro-fuzzy inference system and PCA-LDA were applied to result. As a result of, ANFIS shows the highest rate which value is 98 %. Generally, PCA-LDA and ANFIS are better than BP. Finally, we performed classification of tree progress using ANFIS and that result is 92 %.

Wind tunnel study of wake-induced aerodynamics of parallel stay-cables and power conductor cables in a yawed flow

  • Jafari, Mohammad;Sarkar, Partha P.
    • Wind and Structures
    • /
    • 제30권6호
    • /
    • pp.617-631
    • /
    • 2020
  • Wake-induced aerodynamics of yawed circular cylinders with smooth and grooved surfaces in a tandem arrangement was studied. This pair of cylinders represent sections of stay-cables with smooth surfaces and high-voltage power conductors with grooved surfaces that are vulnerable to flow-induced structural failure. The study provides some insight for a better understanding of wake-induced loads and galloping problem of bundled cables. All experiments in this study were conducted using a pair of stationary section models of circular cylinders in a wind tunnel subjected to uniform and smooth flow. The aerodynamic force coefficients and vortex-shedding frequency of the downstream model were extracted from the surface pressure distribution. For measurement, polished aluminum tubes were used as smooth cables; and hollow tubes with a helically grooved surface were used as power conductors. The aerodynamic properties of the downstream model were captured at wind speeds of about 6-23 m/s (Reynolds number of 5×104 to 2.67×105 for smooth cable and 2×104 to 1.01×105 for grooved cable) and yaw angles ranging from 0° to 45° while the upstream model was fixed at the various spacing between the two model cylinders. The results showed that the Strouhal number of yawed cable is less than the non-yawed case at a given Reynolds number, and its value is smaller than the Strouhal number of a single cable. Additionally, compared to the single smooth cable, it was observed that there was a reduction of drag coefficient of the downstream model, but no change in a drag coefficient of the downstream grooved case in the range of Reynolds number in this study.

Traffic control technologies without interruption for component replacement of long-span bridges using microsimulation and site-specific data

  • Zhou, Junyong;Shi, Xuefei;Zhang, Liwen;Sun, Zuo
    • Structural Engineering and Mechanics
    • /
    • 제70권2호
    • /
    • pp.169-178
    • /
    • 2019
  • The replacement of damaged components is an important task for long-span bridges. Conventional strategy for component replacement is to close the bridge to traffic, so that the influence of the surrounding environment is reduced to a minimum extent. However, complete traffic interruption would bring substantial economic losses and negative social influence nowadays. This paper investigates traffic control technologies without interruption for component replacement of long-span bridges. A numerical procedure of traffic control technologies is proposed incorporating traffic microsimulation and site-specific data, which is then implemented through a case study of cable replacement of a long-span cable-stayed bridge. Results indicate traffic load effects on the bridge are lower than the design values under current low daily traffic volume, and therefore cable replacement could be conducted without traffic control. However, considering a possible medium or high level of daily traffic volume, traffic load effects of girder bending moment and cable force nearest to the replaced cable become larger than the design level. This indicates a potential risk of failure, and traffic control should be implemented. Parametric studies show that speed control does not decrease but increase the load effects, and flow control using lane closure is not effectual. However, weight control and gap control are very effective to mitigate traffic load effects, and it is recommended to employ a weight control with gross vehicle weight no more than 65 t or/and a gap control with minimum vehicle gap no less than 40 m for the cable replacement of the case bridge.

Response evaluation and vibration control of a transmission tower-line system in mountain areas subjected to cable rupture

  • Chen, Bo;Wu, Jingbo;Ouyang, Yiqin;Yang, Deng
    • Structural Monitoring and Maintenance
    • /
    • 제5권1호
    • /
    • pp.151-171
    • /
    • 2018
  • Transmission tower-line systems are commonly slender and generally possess a small stiffness and low structural damping. They are prone to impulsive excitations induced by cable rupture and may experience strong vibration. Excessive deformation and vibration of a transmission tower-line system subjected to cable rupture may induce a local destruction and even failure event. A little work has yet been carried out to evaluate the performance of transmission tower-line systems in mountain areas subjected to cable rupture. In addition, the control for cable rupture induced vibration of a transmission tower-line system has not been systematically conducted. In this regard, the dynamic response analysis of a transmission tower-line system in mountain areas subjected to cable rupture is conducted. Furthermore, the feasibility of using viscous fluid dampers to suppress the cable rupture-induced vibration is also investigated. The three dimensional (3D) finite element (FE) model of a transmission tower-line system is first established and the mathematical model of a mountain is developed to describe the equivalent scale and configuration of a mountain. The model of a tower-line-mountain system is developed by taking a real transmission tower-line system constructed in China as an example. The mechanical model for the dynamic interaction between the ground and transmission lines is proposed and the mechanical model of a viscous fluid damper is also presented. The equations of motion of the transmission tower-line system subjected to cable rupture without/with viscous fluid dampers are established. The field measurement is carried out to verify the analytical FE model and determine the damping ratios of the example transmission tower-line system. The dynamic analysis of the tower-line system is carried out to investigate structural performance under cable rupture and the validity of the proposed control approach based on viscous fluid dampers is examined. The made observations demonstrate that cable rupture may induce strong structural vibration and the implementation of viscous fluid dampers with optimal parameters can effectively suppress structural responses.