• Title/Summary/Keyword: c-fos mRNA and protein

Search Result 55, Processing Time 0.024 seconds

Down-regulation of FRα Inhibits Proliferation and Promotes Apoptosis of Cervical Cancer Cells in Vitro

  • Bai, Li-Xia;Ding, Ling;Jiang, Shi-Wen;Kang, Hui-Jie;Gao, Chen-Fei;Chen, Chen;Zhou, Qin;Wang, Jin-Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5667-5672
    • /
    • 2014
  • Folate receptor alpha ($FR{\alpha}$) mediates folate uptake by endocytosis, and while folate is essential to DNA methylation and synthesis and may have an important role in proliferating cells. $FR{\alpha}$ is known to be expressed in rapidly proliferating cells, including many cancer cell lines, but there has been no systematic assessment of expression in cervical cancer cell lines. The aim of the present study was to evaluate the effects of $FR{\alpha}$ on proliferation and apoptosis of cervical cells and correlation mechanism. In this study, we investigated the biological function of $FR{\alpha}$ in Hela cells using RNA interference. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK8) assay, while cell cycling and apoptosis were assessed by flow cytometry, mRNA levels by real time-PCR and protein levels of $FR{\alpha}$, c-Fos and c-Jun by Western blotting. The results revealed that $FR{\alpha}$ was highly expressed in Hela cells and its silencing with a small interfering RNA (siRNA) inhibited cell proliferation and induced cell apoptosis, arresting the cell cycle in G0/G1 stages while decreasing the proportion in S and G2/M stages, and suppressed the expression levels of c-Fos and c-Jun. In conclusion, the results of this study indicated that $FR{\alpha}$ down-regulation might be capable of suppressing cervical cancer cell proliferation and promoting apoptosis. It suggested that $FR{\alpha}$ might be a novel therapeutic target for cervical cancer.

Inhibition of Angiotensin II-Induced Vascular Smooth Muscle Cell Hypertrophy by Different Catechins

  • Zheng, Ying;Song, Hye-Jin;Yun, Seok-Hee;Chae, Yeon-Jeong;Jia, Hao;Kim, Chan-Hyung;Ha, Tae-Sun;Sachinidis, Agapios;Ahn, Hee-Yul;Davidge, Sandra T.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2005
  • A cumulative evidence indicates that consumption of tea catechin, flavan-3-ol derived from green tea leaves, lowers the risk of cardiovascular diseases. However, a precise mechanism for this cardiovascular action has not yet been fully understood. In the present study, we investigated the effects of different green tea catechins, such as epigallocatechin-3 gallate (EGCG), epigallocatechin (EGC), epicatechin-3 gallate (ECG), and epicatechin (EC), on angiotensin II (Ang II)-induced hypertrophy in primary cultured rat aortic vascular smooth muscle cell (VSMC). [$^3H$]-leucine incorporation was used to assess VSMC hypertrophy, protein kinase assay, and western blot analysis were used to assess mitogen-activated protein kinase (MAPK) activity, and RT-PCR was used to assess c-jun or c-fos transcription. Ang II increased [$^3H$]-leucine incorporation into VSMC. However, EGCG and ECG, but not EGC or EC, inhibited [$^3H$]-leucine incorporation increased by Ang II. Ang II increased phosphorylation of c-Jun, extracellular-signal regulated kinase (ERK) 1/2 and p38 MAPK in VSMC, however, EGCG and ECG , but not EGC or EC, attenuated c-Jun phosphorylation increased by Ang II. ERK 1/2 and p38 MAPK phosphorylation induced by Ang II were not affected by any catechins. Ang II increased c-jun and c-fos mRNA expression in VSMC, however, EGCG inhibited c-jun but not c-fos mRNA expression induced by Ang II. ECG, EGC and EC did not affect c-jun or c-fos mRNA expression induced by Ang II. Our findings indicate that the galloyl group in the position 3 of the catechin structure of EGCG or ECG is essential for inhibiting VSMC hypertrophy induced by Ang II via the specific inhibition of JNK signaling pathway, which may explain the beneficial effects of green tea catechin on the pathogenesis of cardiovascular diseases observed in several epidemiological studies.

Effect of Protein Kinase C Inhibitor (PKCI) on Radiation Sensitivity and c-fos Transcription Activity (Protein Kinase C Inhibitor (PKCI)에 의한 방사선 민감도 변화와 c-fos Proto-oncogene의 전사 조절)

  • Choi Eun Kyung;Chang Hyesook;Rhee Yun-Hee;Park Kun-Koo
    • Radiation Oncology Journal
    • /
    • v.17 no.4
    • /
    • pp.299-306
    • /
    • 1999
  • Purpose : The human genetic disorder ataxia-telangiectasia (AT) is a multisystem disease characterized by extreme radiosensitivity. The recent identification of the gene mutated in AT, ATM, and the demonstration that it encodes a homologous domain of phosphatidylinositol 3-kinase (PI3-K), the catalytic subunit of an enzyme involved in transmitting signals from the cell surface to the nucleus, provide support for a role of this gene in signal transduction. Although ionizing radiation was known to induce c-fos transcription, nothing is known about how ATM or PKCI mediated signal transduction pathway modulates the c-fos gene transcription and gene expression. Here we have studied the effect of PKCI on radiation sensitivity and c-fos transcription in normal and AT cells. Materials and Methods: Normal (LM217) and AT (AT5BIVA) cells were transfected with PKCI expression plasmid and the overexpression and integration of PKCI was evaluated by northern blotting and polymerase chain reaction, respectively. 5 Gy of radiation was exposed to LM and AT cells transfected with PKCI expression plasmid and cells were harvested 48 hours after radiation and investigated apoptosis with TUNEL method. The c-fos transcription activity was studied by performing CAT assay of reporter gene after transfection of c-fos CAT plasmid into AT and LM cells. Results: Our results demonstrate for the first time a role of PKCI on the radiation sensitivity and c-fos expression in LM and AT cells. PKCI increased radiation induced apoptosis in LM cells but reduced apoptosis in AT cells. The basal c-fos transcription activity is 70 times lower in AT cells than that in LM cells. The c-fos transcription activity was repressed by overexpression of PKCI in LM cells but not in AT cells. After induction of c-fos by Ras protein, overexpression of PKCI repressed c-fos transcription in LM cells but not in AT cells Conclusion: Overexpression of PKCI increased radiation sensitivity and repressed c-fos transcription in LM cells but not in AT cells. The results may be a. reason of increased radiation sensitivity of AT cells. PKCI may be involved in an ionizing radiation induced signal transduction pathway responsible for radiation sensitivity and c-fos transcription. The data also provided evidence for novel transcriptional difference between LM and AT cells.

  • PDF

Activities of E6 Protein of Human Papillomavirus 16 Asian Variant on miR-21 Up-regulation and Expression of Human Immune Response Genes

  • Chopjitt, Peechanika;Pientong, Chamsai;Bumrungthai, Sureewan;Kongyingyoes, Bunkerd;Ekalaksananan, Tipaya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3961-3968
    • /
    • 2015
  • Background: Variants of human papillomavirus (HPV) show more oncogenicity than do prototypes. The HPV16 Asian variant (HPV16As) plays a major role in cervical cancer of Asian populations. Some amino acid changes in the E6 protein of HPV16 variants affect E6 functions such as p53 interaction and host immune surveillance. This study aimed to investigate activities of HPV16As E6 protein on modulation of expression of miRNA-21 as well as interferon regulatory factors (IRFs) 1, 3, 7 and c-fos. Materials and Methods: Vectors expressing E6 protein of HPV16As (E6D25E) or HPV16 prototype (E6Pro) were constructed and transfected into C33A cells. HCK1T cells expressing E6D25E or E6Pro were established by transducing retrovirus-containing E6D25E or 16E6Pro. The E6AP-binding activity of E6 and proliferation of the transfected C33A cells were determined. MiR-21 and mRNA of interesting genes were detected in the transfected C33A cells and/or the HCK1T cells, with or without treatment by culture medium from HeLa cells (HeLa-CM). Results: E6D25E showed binding activity with E6AP similar to that of E6Pro. Interestingly, E6D25E showed a higher activity of miR-21 induction than did E6Pro in C33A cells expressing E6 protein. This result was similar to the HCK1T cells expressing E6 protein, with HeLa-CM treatment. The miR-21 up-regulation significantly corresponded to its target expression. Different levels of expression of IRFs were also observed in the HCK1T cells expressing E6 protein. Interestingly, when treated with HeLa-CM, IRFs 1, 3 and 7 as well as c-fos were significantly suppressed in the HCK1T cells expressing E6D25E, whereas those in the HCK1T cells expressing E6Pro were induced. A similar situation was seen for IFN-${\alpha}$ and IFN-${\beta}$. Conclusions: E6D25E of the HPV16As variant differed from the E6 prototype in its activities on epigenetic modulation and immune surveillance and this might be a key factor for the important role of this variant in cervical cancer progression.

Effects of Fermented Achyranthes japonica Nakai, Angelica gigas Nakai, and Eucommia ulmoides Oliver Extracts on Regulation of Apoptosis in Articular Chondrocytes (Primary Chondrocytes에서 발효우슬, 당귀, 두충 복합물의 세포사멸 조절 효과)

  • Dakyung Kim;Wonhee Jo;Minhee Lee;Hyun Cheol Jeong;Sung-Jin Lee;Seunghun Lee;Jeongmin Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.7-14
    • /
    • 2023
  • The effects of fermented Achyranthes japonica Nakai, Angelica gigas Nakai, and Eucommia ulmoides Oliver extracts (FAAE) on regulation of inflammation and apoptosis were investigated in primary cultured rat cartilage cells. To identify the protective effects of FAAE against H2O2, cell survival was measured by MTT assay. Smad3, Collagen type I, MMP3, and MMP13 were measured by real-timpe PCR and westernbot and the inflammatory (NF-κB pathway, COX-2, iNOS) factors were determined by western blot. The apoptosis related factors (JNK, c-Fos, c-Jun, caspase 3, Bax, and Bcl-2) were determined by western blot. FAAE significantly increased the follwing: H2O2 treated cell survival, mRNA and protein expression of Smad 3, collagen type I. In addition, FAAE significantly decreased the protein expression of inflammatory and apoptosis related factors. This study suggests that FAAE have a protection effect of chondrocytes through inhibition of inflammation and apoptosis. Thus, FAAE is a therapeutic potential food componet in osteoarthritis.

Inhibitory Mechanism of Curcumin in Osteoclast Differentiation (파골세포의 분화에 커규민의 억제 작용기전)

  • Kwak, Han-Bok;Choi, Min-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.796-801
    • /
    • 2008
  • Bone is a dynamic tissue that is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Curcumin isolated from Kang-hwang (Turmeric) is widely used as a foodstuff, cosmetic, and medicine. However, the effect of curcumin isolated from Kang-hwang in osteoclast differentiation remains unknown. In this study, we sought to examine the role of curcumin in osteoclast differentiation. Here we show that curcumin greatly inhibited RANKL-mediated osteoclast differentiation in osteoclast precursors without cytotoxicity. RANKL induced the phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK) and mediated $I-{\kappa}B$ degradation in bone marrow macrophages (BMMs). However, RANKL-mediated p38 MAPK phosphorylation was inhibited by the addition of curcumin. Curcumin inhibited the mRNA expression of TRAP, c-Fos, and NFATc1 in BMMs treated with RANKL. Furthermore, the protein expression of c-Fos and NFATc1 induced by RANKL was suppressed by curcumin treatment. Taken together, our results suggest that curcumin may have a potential therapeutic role in bone-related diseases such as osteoporosis by inhibiting osteoclast differentiation.

Studies of Anti-inflammation of Liriopis Tuber to Autoimmunune Diabetes in NOD Mice (NOD 당뇨병 생쥐에 미치는 맥문동의 항염증 효과)

  • Roh, Seong-Soo;Choi, Hak-Joo;Kim, Dong-Hee;Seo, Young-Bae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.766-770
    • /
    • 2008
  • Bone is a dynamic tissue that is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Curcumin isolated from Kang-hwang (Turmeric) is widely used as a foodstuff, cosmetic, and medicine. However, the effect of curcumin isolated from Kang-hwang in osteoclast differentiation remains unknown. In this study, we sought to examine the role of curcumin in osteoclast differentiation. Here we show that curcumin greatly inhibited RANKL-mediated osteoclast differentiation in osteoclast precursors without cytotoxicity. RANKL induced the phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK) and mediated $I-{\kappa}B$ degradation in bone marrow macrophages (BMMs). However, RANKL-mediated p38 MAPK phosphorylation was inhibited by the addition of curcumin. Curcumin inhibited the mRNA expression of TRAP, c-Fos, and NFATc1 in BMMs treated with RANKL. Furthermore, the protein expression of c-Fos and NFATc1 induced by RANKL was suppressed by curcumin treatment. Taken together, our results suggest that curcumin may have a potential therapeutic role in bone-related diseases such as osteoporosis by inhibiting osteoclast differentiation.

Suppressive effects of Morus alba Linne Root Bark (MRAL) on activation of MC/9 mast cells (상백피에 의한 MC/9 비만세포의 활성 억제 조절 연구)

  • Lee, Ki Jeon;Kim, Bok Kyu;Kil, Ki Jung
    • The Korea Journal of Herbology
    • /
    • v.28 no.1
    • /
    • pp.33-42
    • /
    • 2013
  • Objective : Morus alba Linne Root Bark (MRAL) is a medicinal herb in Korean Medicine, known for its anti-inflammatory and anti-allergic properties. However, its mechanisms of action and the cellular targets have not yet been found and the study was developed to investigate the allergic suppressive effect of MRAL. The purpose of this study is to investigate the allergic suppressive effects of MRAL on activation of MC/9 mast cells. Methods : Cytotoxic activity of MRAL (50, 100, 200, 400 ${\mu}g/mL$) on MC/9 mast cells measured using EZ-Cytox cell viability assay kit (WST reagent). The levels of interleukin-5 (IL-5), IL-13 and IL-4, IL-5, IL-6, IL-13 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and real-time PCR respectively. The expression of transcription factors such as GATA-1, GATA-2, NFAT, AP-1 and NF-${\kappa}B$ p65 DNA binding activity were measured by western blot and electrophoresis mobility shift assay (EMSA). Results : Our results indicated that MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) significantly inhibited PMA/Ionomycin-induced production of IL-5 and IL-13 and the expression of IL-4, IL-5, IL-6 and IL-13 mRNA in MC/9 mast cells. Moreover, MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) inhibited PMA/Ionomycin-induced GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos protein expression and NF-${\kappa}B$ p65 DNA binding activity in MC/9 mast cells. Conclusions : In conclusion, we suspect the anti-allergenic activities of MRAL, may be related to the regulation of transcription factors GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos and NF-${\kappa}B$ p65 DNA binding assay causing inhibition of Th2 cytokines IL-5 and IL-13 in mast cells.

Curcumin Derivatives Inhibit the Formation of Jun-Fos-DNA Complex Independently of their Conserved Cysteine Residues

  • Park, Chi-Hoon;Lee, Ju-Hyung;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.474-480
    • /
    • 2005
  • Curcumin, a major active component of turmeric, has been identified as an inhibitor of the transcriptional activity of activator protein-1 (AP-1). Recently, it was also found that curcumin and synthetic curcumin derivatives can inhibit the binding of Jun-Fos, which are the members of the AP-1 family, to DNA. However, the mechanism of this inhibition by curcumin and its derivatives was not disclosed. Since the binding of Jun-Fos dimer to DNA can be modulated by redox control involving conserved cysteine residues, we studied whether curcumin and its derivatives inhibit Jun-Fos DNA binding activity via these residues. However, the inhibitory mechanism of curcumin and its derivatives, unlike that of other Jun-Fos inhibitors, was found to be independent of these conserved cysteine residues. In addition, we investigated whether curcumin derivatives can inhibit AP-1 transcriptional activity in vivo using a luciferase assay. We found that, among the curcumin derivatives examined, only inhibitors shown to inhibit the binding of Jun-Fos to DNA by Electrophoretic Mobility Shift Assay (EMSA) inhibited AP-1 transcriptional activity in vivo. Moreover, RT-PCR revealed that curcumin derivatives, like curcumin, downregulated c-jun mRNA in JB6 cells. These results suggest that the suppression of the formation of DNA-Jun-Fos complex is the main cause of reduced AP-1 transcriptional activity by curcuminoids, and that EMSA is a suitable tool for identifying inhibitors of transcriptional activation.

Gentianae Macrophyllae Radix Water Extract Inhibits RANKL-Induced Osteoclastogenesis and Osteoclast Specific Genes (진교의 파골세포 분화 및 골 흡수 유전자 억제기전 연구)

  • Yang, Kyujin;Kim, Jae Hyun;Kim, Minsun;Ryu, Gwang-hyun;Moon, Jin-Ho;Lee, Hye-In;Jung, Hyuk-Sang;Sohn, Youngjoo
    • Korean Journal of Acupuncture
    • /
    • v.37 no.2
    • /
    • pp.63-75
    • /
    • 2020
  • Objectives : Osteoporosis is the most common bone disease and osteoporosis fracture is the leading cause of decreased life. Bisphosphonate and selective estrogen receptor modulators are the best choice of treatment for osteoporosis. However, when used for a long time, they increase the probability of side effect such as osteonecrosis of the jaw. Thus, it is crucial to develop alternative medicine to treat osteoporosis. Gentianae Macrophyllae Radix, a herbal medicine, is mainly to treat rheumatoid arthritis. However, the effect of the water extract of Gentianae Macrophyllae Radix (w-GM) on osteoporosis has not been investigated. Thus, we examine whether w-GM can inhibit osteoclast differentiation and bone resorption on receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL)-treated RAW 264.7 cells. In this study, RAW 264.7 cells were used as an osteoclast differentiation model by treating them with RANKL. Methods : RAW 264.7 cells were used to determine the effect of w-GM on osteoclast differentiation and bone resorption. The number of tartrate-resistant acid phosphatase (TRAP)-positive cells, TRAP activity and pit formation assay were examined. In addition, protein expressions were measured by western blot and mRNA expressions were analyzed by reverse transcription polymerase chain reaction. Results : Treatment with w-GM inhibited the number of TRAP-positive cells, TRAP activity and pit area. In addition, w-GM decreased protein expression such as mitogen-activated protein kinase, NF-κB, c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). It also inhibited the mRNA levels such as c-Fos, NFATc1, TRAP, NF-κB, calcitonin receptor and cathepsin K in RANKL-treated RAW 264.7 cells. Conclusions : These results suggest that w-GM has inhibitory effects via osteoclast differentiation, thus it could be a new medication for osteoporosis.