References
- Ahn HY, Hadizadeh KR, Seul C, Yun YP, Vetter H, Sachinidis A. Epigallocatechin-3 gallate selectively inhibits the PDGF-BB-induced intracellular signaling transduction pathway in vascular smooth muscle cells and inhibits transformation of sis-transfected NIH 3T3 fibroblasts and human glioblastoma cells (A172). Mol Biol Cell 10: 1093-1104, 1999 https://doi.org/10.1091/mbc.10.4.1093
- Benelli R, Vene R, Bisacchi D, Garbisa S, Albini A. Anti-invasive effects of green tea polyphenol epigallocatechin-3-gallate (EGCG), a natural inhibitor of metallo and serine proteases. Biol Chem 383: 101-105, 2002 https://doi.org/10.1515/BC.2002.010
- Berk BC, Corson MA. Angiotensin II signal transduction in vascular smooth muscle. Circ Res 80: 607-616, 1997 https://doi.org/10.1161/01.RES.80.5.607
- Berk BC, Vekshtein V, Gordon HM, Tsuda T. Angiotensin IIstimulated protein synthesis in cultured smooth muscle cells. Hypertension 13: 305-314, 1989 https://doi.org/10.1161/01.HYP.13.4.305
- Black MJ, Adams MA, Bobik A, Campbell JH, Campbell GR. Vascular smooth muscle polyploidy in the development and regression of hypertension. Clin Exp Pharmacol Physiol 15: 345-348, 1988 https://doi.org/10.1111/j.1440-1681.1988.tb01085.x
- Eguchi S, Iwasaki H, Ueno H, Frank GD, Motley ED, Eguchi K, Marumo F, Hirata Y, Inagami T. Intracellular signaling of angiotensin II-induced P70 S6 kinase phosphorylation at Ser411 in vascular smooth muscle cells. Possible requirement of epidermal growth factor receptor, Ras, extracellular signal-regulated kinase and Akt. J Biol Chem 274: 36843-36851, 1999 https://doi.org/10.1074/jbc.274.52.36843
- Geisterfer AA, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62: 749-756, 1988 https://doi.org/10.1161/01.RES.62.4.749
- Giasson E, Meloche S. Role of P70 S6 protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells. J Biol Chem 270: 5225-5231, 1995 https://doi.org/10.1074/jbc.270.10.5225
- Gille H, Sharrocks A, Shaw P. Phosphorylation of p62TCF by MAP kinases stimulates ternary complex formation at c-Fos promoter. Nature 358: 414-417, 1992 https://doi.org/10.1038/358414a0
- Hixon ML, Muro-Cacho C, Wagner MW, Obejero-Paz C, Mille E, Fujio Y, Kureishi Y, Hassold T. Walsh K, Gualberto A. Akt/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization. J Clin Invest 106: 1011-1020, 2000 https://doi.org/10.1172/JCI8252
- Hwang KC, Lee KH, Jang Y, Yun YP, Chung KH. Epigallocatechin-3-gallate inhibits basic fibroblast growth factor- induced intracellular signaling transduction pathway in rat aortic smooth muscle cells. J Cardiovasc Pharmacol 39: 271-277, 2002 https://doi.org/10.1097/00005344-200202000-00014
- Imai K, Nakachi K. Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. Br Med J 310: 693-696, 1995 https://doi.org/10.1136/bmj.310.6981.693
- Kallunki T, Deng T, Hibi M, Karin M. c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87: 929-939, 1996 https://doi.org/10.1016/S0092-8674(00)81999-6
- Kang WS, Chung KH, Chung JH, Lee JY, Park JB, Zhang YH, Yoo HS, Yun YP. Antiplatelet activity of green tea catechins is mediated by inhibition of cytoplasmic calcium increase. J Cardiovascular Pharmacol 38: 875-884, 2001 https://doi.org/10.1097/00005344-200112000-00009
- Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270: 16483-16486, 1995 https://doi.org/10.1074/jbc.270.28.16483
- McKay S, de Jongste JC, Saxena PR, Sharma HS. Angiotensin II induces hypertrophy of human airway smooth muscle cells: expression of transcription factors and transforming growth factor-beta1. Am J Respir Cell Mol Biol 18: 823-833, 1998 https://doi.org/10.1165/ajrcmb.18.6.2924
- Middleton Jr E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev 52: 673-751, 2000
- Musti AM, Treier M, Bohmann D. Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275: 400-402, 1997 https://doi.org/10.1126/science.275.5298.400
- Nagai K, Jiang MH, Hada J, Nagata T, Yajima Y, Yamamoto S, Nishizaki T. (-)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res 956: 319-322, 2002 https://doi.org/10.1016/S0006-8993(02)03564-3
- Nakagawa T, Yokozawa T. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40: 1745-1750, 2002 https://doi.org/10.1016/S0278-6915(02)00169-2
- Owens GK, Schwartz SM. Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat. Role of cellular hypertrophy, hyperploidy, and hyperplasia. Circ Res 51: 280-289, 1982 https://doi.org/10.1161/01.RES.51.3.280
- Owens GK, Schwartz SM. Vascular smooth muscle cell hypertrophy and hyperploidy in the Goldblatt hypertensive rat. Circ Res 53: 491-501, 1983 https://doi.org/10.1161/01.RES.53.4.491
- Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR. Phosphorylation of c-jun mediated by MAP kinases. Nature 353: 67-674, 1991
- Rivera VM, Greenberg ME. Growth factor-induced gene expression: the ups and downs of c-fos regulation. New Biol 2: 751-758, 1990
- Sachinids A, Skach RA, Seul C, Ko Y, Hescheler J, Ahn HY, Fingerle J. Inhibition of the PDGF -receptor tyrosine phosohorylation and its downstream intracellular signal transduction pathway in rat and human vascular smooth muscle cells by different catechins. FASEB J 16: 893-895, 2002 https://doi.org/10.1096/fj.01-0799fje
- Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C. Polyphenolic flavonols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322: 339-346, 1995 https://doi.org/10.1006/abbi.1995.1473
- Santana-Rios G, Orner GA, Amantana A, Provost C, Wu SY, Dashwood RH. Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay. Mutat Res 495: 61-74, 2001 https://doi.org/10.1016/S1383-5718(01)00200-5
- Servant MJ, Giasson E, Meloche S. Inhibition of growth factorinduced protein synthesis by a selective MEK inhibitor in aortic smooth muscle cells. J Biol Chem 271: 16047-16052, 1996 https://doi.org/10.1074/jbc.271.27.16047
- Smeal T, Hibi M, Kanin M. Altering the specificity of signal transduction cascades:positive regulation of c-Jun transcriptional activity by protein kinase A. EMBO 3: 6006-6010, 1994
- Takahashi T, Kawahara Y, Okuda M, Ueno H, Takeshita A, Yokoyama M. Angiotensin II stimulates mitogen-activated protein kinases and protein synthesis by a Ras-independent pathway in vascular smooth muscle cells. J Biol Chem 272: 16018-16022, 1997 https://doi.org/10.1074/jbc.272.25.16018
- Takahashi T, Taniguchi T, Konishi H, Kikkawa U, Ishikawa Y, Yokoyama M. Activation of Akt/protein kinase B after stimulation with angiotensin II in vascular smooth muscle cell. Am J Physiol 276: H1927-H1934, 1999
- Takeuchi K, Nakamura N, Cook NS, Pratt RE, Dzau VJ. Angiotensin II can regulate gene expression by the AP-1 binding sequence via a protein kinase C-dependent pathway. Biochem Biophys Res Commun 172: 1189-1194, 1990 https://doi.org/10.1016/0006-291X(90)91574-C
- Tijburg LB, Mattern T, Folts JD, Weisgerber UM, Katan MB. Tea flavonoids and cardiovascular diseases. Crit Rev Food Sci 37: 771-785, 1997 https://doi.org/10.1080/10408399709527802
- Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273: 15022-15029, 1998 https://doi.org/10.1074/jbc.273.24.15022
- Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK. Reactive oxygen species mediate the activation of Akt/protein kinase by angiotensin II in vascular smooth muscle cells. J Bio Che 274: 22699-22704, 1999 https://doi.org/10.1074/jbc.274.32.22699
- Weber AA, Neuhaus T, Skach RA, Hescheler J, Ahn HY, Schror K, Ko Y, Sachinidis A. Mechanisms of the inhibitory effects of epigallocatechin-3 gallate on platelet-derived growth factor-BBinduced cell signaling and mitogenesis. FASEB J 18: 128-130, 2004 https://doi.org/10.1096/fj.03-0007fje
- Yamaguchi K, Honda M, Ikigai H, Hara Y, Shimamura T. Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type I (HIV-1). Antiviral Res 53: 19-34, 2002 https://doi.org/10.1016/S0166-3542(01)00189-9
- Yamane T, Takahashi T, Kuwata K, Oya K, Inagake M, Kitao Y, Suganuma M, Fujiki H. Inhibition of N-methyl-N'-nitro-N-nitrosoguanidine-induced carcinogenesis by (-)-epigallocatechin gallate in the rat glandular stomach. Cancer Res 55: 2081-2084, 1995
- Yoshizumi M, Tsuchiya K, Kirima K, Kyaw M, Suzaki Y, Tamaki T. Quercetin inhibits Shc- and phosphatidylinositol 3-kinasemediated c-Jun N-terminal kinase activation by angiotensin II in cultured rat aortic smooth muscle cells. Mol Pharmacol 60: 656-665, 2001
- Yoshizumi M, Tsuchiya K, Suzaki Y, Kirima K, Kyaw M, Moon JH, Terao J, Tamaki T. Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-1 signaling pathway. Biochem Biophys Res Commun 293: 1458-1465, 2002 https://doi.org/10.1016/S0006-291X(02)00407-2
- Zheng Y, Song HJ, Kim CH, Kim HS, Kim EG, Sachinidis A, Ahn HY. Inhibitory effect of epigallocatechin 3-O-gallate on vascular smooth muscle cell hypertrophy induced by angiotensin II. J Cardiovasc Pharmacol 43: 200-208, 2004 https://doi.org/10.1097/00005344-200402000-00006