• Title/Summary/Keyword: c-Si interface

Search Result 649, Processing Time 0.036 seconds

Phase Transition and Formatio of $TiSi_2$ Codeposited on Atomicaily Clean Si(111) (초청정 Si기판에 동시 증착된 $TiSi_2$ 의 상전이 및 형성)

  • Gang, Eung-Yeol;Jo, Yun-Seong;Park, Jong-Wan;Jeon, Hyeong-Tak;Nemaniah, R.J.
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.107-112
    • /
    • 1994
  • The phase transition and the surface and interface morphologies of $TiSi_2$ formed on atomically clean Si substrates are investigated. 200$\AA$ Ti and 400$\AA$ Si films on Si(ll1) have been codeposited at elevated temperatures (400~$800^{\circ}C$) in ultrahigh vacuum. The phase transition of TiSiL is characterized with using XRD. The results distinguish the formation of the C49 and C54 crystalline titanium silicides. The surface and interface morphologies of titanium silicides have been examined with SEM and TEM. A relatively smootb surface is observed for the C49 phase while a rough surface and interface are observed for C54 phase. The islanding of the C54 phase becomes severe at high temperature ($800^{\circ}C$). Islands of TiSiL have been observed at temperatures above $700^{\circ}C$ but no islands are observed at temperatures below $600^{\circ}C$. For films deposited at $400^{\circ}C$ and 500%. weak XRD peaks corresponding to TiSi were observed and TEM micrographs exhibited small crystalline regions of titanium silicide at the interface.

  • PDF

Effect of Alumina Content on the Hot Corrosion of SiC by NaCl and Na2SO4 (NaCl과 Na$_2$SO$_4$에 의한 SiC 고온 부식에 미치는 Alumina 첨가량의 영향)

  • 이수영;고재웅;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.626-634
    • /
    • 1991
  • The specimens for the corrosion test were made by hot-pressing of SiC power with 2 wt% Nl2O3 and 10wt% Al2O3 additions at 200$0^{\circ}C$ and 205$0^{\circ}C$. The specimens were corroded in 37 mole% NaCl and 63 mole% Na2SO4 salt mixture at 100$0^{\circ}C$ up to 60 min. SiO2 layer was formed on SiC and then this oxide layer was dissolved by Na2O ion in the salt mixture. The rate of corrosion of the specimen containing 10 wt% Al2O3 was slower than that of the specimen containing 2 wt% Al2O3. This is due to the presence of continuous grain boundary phase in the specimen containing 10 wt% Al2O3. The oxidation of SiC produced gas bubbles at the SiC-SiO2 interface. The rate of corrosion follows a linear rate law up to 50 min. and then was accelerated. This acceleration is due to the disruption oxide layer by the gas evolution at SiC-SiO2 interface. Pitting corrosion has found at open pores and grain boundaries.

  • PDF

The $ Si-SiO_2$ interface structure of a SIMOX SOI formed by 100keV $O^+$ ion beam (100 keV $O^+$ 이온 빔에 의한 SIMOX SOI의 $ Si-SiO_2$계면 구조)

  • 김영필;최시경;김현경;문대원
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.35-42
    • /
    • 1998
  • - The Si-$SiO_2$ interface of silicon on insulator (SOI) formed by 100 keV $O^+$ was ohserved using high resolution transmission electron microscopy (HRTEM), before and after annealing. The interface of as-implanted sample, ~$5\times 10^{17}\textrm{cm}^{-2}O^+$ implanted at $550^{\circ}C$ was very rough and it has many defectsoxide precipitate, stacking fault, coesite $SiO_2$ etc. However, the interface became flat by high temperature annealing at $1300^{\circ}C$ for 4 hour. It's roughness, observed by HRTEM, was comparable to the interface roughness of 3 keV $O_2^\;+$ ion beam oxide and -6 nm gate oxide formed by thermal oxidation.

  • PDF

Study of Pd substitution in orthorhombic-NiSi/Si (010) structure: First principles calculation (Orthorhombic-NiSi/Si (010) 구조의 Pd 치환 연구: 제 1 원리 계산)

  • Kim, Dae-Hee;Kim, Dae-Hyun;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.41-44
    • /
    • 2008
  • NiSi is less stable than the previously-used $CoSi_2$ at high temperature. Some noble metals, such as Pd and Pt, have been added to NiSi to improve its thermal stability. We employed a first principles calculation to understand the Pd segregation at the interface. An orthorhombic structure of NiSi was used to construct an orthorhombic-NiSi/Si (010). Lattice parameters along a- and c-axes in orthorhombic-NiSi were matched with those of Si for epitaxy contact. The optimized $1\times4\times1$ orthorhombic-NiSi (010) and $1\times2\times1$ Si (010) superstructures were put together to construct the orthorhombic-NiSi/Si (010), and the superstructure was relieved in calculation to minimize its total free energy. The optimized interface thickness of the superstructure was $1.59\AA$. Pd atom was substituted in Ni and Si sites located near interface. Both Ni and Si sites located at the interface were favorable for Pd substitution.

  • PDF

The Effect of Catalytic Metal Work Functions and Interface States on the High Temperature SiC-based Gas Sensors (금속 (Pt)과 4H-SiC의 계면상태에 따른 실리콘 카바이드 기반 고온 가스센서 특성 분석)

  • Jung, Ji-Chul;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.280-284
    • /
    • 2011
  • Silicon carbide (SiC)-based gas sensors can be operated at very high temperatures. So far, catalytic metal-schottky diodes respond fast to a change between a reducing and an oxidizing atmosphere. Therefore SiC diodes have been suggested for high temperature gas sensor applications. In this work, the effect of reactivity of the catalytic surface on the 4H-SiC sensor-structures in 375 K~775 K have been studied and some fundamental simulations have also been performed.

${\mu}c$-Si window layer를 이용한 박막 태양전지의 고효율화에 관한 simulation

  • Park, Seung-Man;Gong, Dae-Yeong;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.403-403
    • /
    • 2011
  • TCO/p/i/n 구조의 비정질 실리콘 박막 태양전지의 제작에 있어서 a-Si 혹은 넓은 밴드갭 물질인 SiOx, SiC 등은 window layer로 주로 사용 되어왔다. 그러나 ${\mu}c$-Si는 우수한 광학적, 전기적 특성에 불구하고 낮은 activation energy에 의한 p/i interface 에서의 band-off set에 의한 정공재결합에 의해 사용되어 지지 못했다. 이러한 재결합은 p/i interface상에 buffer layer를 삽입함으로써 개선되어 질 수 있다. 본 논문에서는 비정질 실리콘 보다 넓은 광학적 밴드갭을 가지는 a-SiOx 박막을 완충층으로 사용하여 p/i 계면에서의 재결합 감소에 대한 시뮬레이션을 수행하였다. a-SiOX 박막 내에 포함 된 산소의 양에 따라 밴드갭을 조절하여 1.8eV~2.0eV 사이의 완충층을 삽입하여 박막태양전지의 개방전압, 단락전류, 효율 등에 끼치는 영향을 ASA 시뮬레이션을 통하여 알아보았다.

  • PDF

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

Extraction of Average Interface Trap Density using Capacitance-Voltage Characteristic at SiGe p-FinFET and Verification using Terman's Method (SiGe p-FinFET의 C-V 특성을 이용한 평균 계면 결함 밀도 추출과 Terman의 방법을 이용한 검증)

  • Kim, Hyunsoo;Seo, Youngsoo;Shin, Hyungcheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.56-61
    • /
    • 2015
  • Ideal and stretch-out C-V curve were shown at high frequency using SiGe p-FinFET simulation. Average interface trap density can be extracted by the difference of voltage axis on ideal and stretch-out C-V curve. Also, interface trap density(Dit) was extracted by Terman's method that uses the same stretch-out of C-V curve with interface trap characteristic, and average interface trap density was calculated at same energy level. Comparing the average interface trap density, which was found by method using difference of voltage, with Terman's method, it was verified that the two methods almost had the same average interface trap density.

A Study on Critical Strain Energy Release Rate Mode II of Chemically Treated SiC-filled Epoxy Composites (표면처리된 탄화규소강화 에폭시 복합재료의 GIIC 특성)

  • Park, Soo-Jin;Oh, Jin-Seok
    • Journal of Adhesion and Interface
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2005
  • In this work, the effect of chemical treatments on surface properties of SiC was investigated in crack resistance properties of SiC/epoxy composites. The surface properties of SiC were determined by acid/base values and FT-IR measurements. Also the crack resistance properties of the composites were studied in critical strain energy release rate mode II ($G_{IIC}$) measurements. As a result, the acidically treated SiC had higher acid value than that of untreated SiC or basically treated SiC. The crack resistance properties of the composites had been improved in the specimens treated by acidic solution. These results were could be attributed to the acide-base intermolecular interaction between SiC and epoxy resin, resulting in increase of the degree of adhesion at interfaces.

  • PDF

Studies of the $TiO_2-Si$ Interface Bombarded by $Ar^+$ Ion Beam

  • Zhang, J.;Huang, N.K.;Lu, T.C.;Zeng, L.;Din, T.;Chen, Y.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.63-66
    • /
    • 2003
  • It is experimentally shown that a $TiO_2$ film on Si(111) substrate was prepared by using the technique of D.C. reaction sputter deposition with $Ar^{+}$ ion beam bombardment, and a layer-like structure was observed from the depth profile of the interface between $TiO_2$ film and Si substrate with Scanning Electron Microscopy and Electron Probe. It was also surprisingly discovered that Ti atoms could be detected at about 9 $\mu$m depth. The $TiO_2$-Si interface bombarded by $Ar^{+}$ ion beams revealed multi-layer structures, a mechanism might be caused by defect diffusion, impurity and matrix relocation. Multi-relocations of impurity and matrix atoms were as a result of profile broadening of the $TiO_2$-Si interface, and the spread due to matrix relocation in this system is shown to exceed much more the spread due to impurity relocation.