• Title/Summary/Keyword: c-Si interface

Search Result 646, Processing Time 0.036 seconds

Influence of metal annealing deposited on oxide layer

  • Kim, Eung-Soo;Cho, Won-Ju;Kwon, Hyuk-Choon;Kang, Shin-Won
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.365-368
    • /
    • 2002
  • We investigated the influence of RTP annealing of multi-layered metal films deposited on oxides layer. Two types of oxides, BPSG and P-7205, were used as a bottom layer under multi-layered metal film. The bonding was not good in metal/BPSG/Si samples because adhesion between metal layer and BPSG oxide layer was poor by interfacial reaction during RTP annealing above 650$^{\circ}C$. On the other hand bonding was always good in metal/ P-TEOS /Si samples regardless of annealing temperature. We observed the interface between oxide and metal layers using AES and TEM. The phosphorus and oxygen profile in interface between metal and oxide layers were different in metal/BPSG/Si and metal/P-TEOS/Si samples. We have known that the properties of interface was improved in metal/BPSG/Si samples when the sample was annealed below 650$^{\circ}C$.

  • PDF

The Electrical Properties of Post-Annealing in Neutron-Irradiated 4H-SiC MOSFETs (중성자 조사한 4H-SiC MOSFET의 열처리에 의한 전기적 특성 변화)

  • Lee, Taeseop;An, Jae-In;Kim, So-Mang;Park, Sung-Joon;Cho, Seulki;Choo, Kee-Nam;Cho, Man-Soon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.198-202
    • /
    • 2018
  • In this work, we have investigated the effect of a 30-min thermal anneal at $550^{\circ}C$ on the electrical characteristics of neutron-irradiated 4H-SiC MOSFETs. Thermal annealing can recover the on/off characteristics of neutron-irradiated 4H-SiC MOSFETs. After thermal annealing, the interface-trap density decreased and the effective mobility increased in terms of the on-characteristics. This finding could be due to the improvement of the interfacial state from thermal annealing and the reduction in Coulomb scattering due to the reduction in interface traps. Additionally, in terms of the off-characteristics, the thermal annealing resulted in the recovery of the breakdown voltage and leakage current. After the thermal annealing, the number of positive trapped charges at the MOSFET interface was decreased.

Fabrication of SiC Converted Graphite by Chemical Vapor Reaction Method (화학적 기상 반응법에 의한 탄화규소 피복 흑연의 제조 (I))

  • 윤영훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1199-1204
    • /
    • 1997
  • SiC conversion layer was fabricated by the chemical vapor reaction between graphite substrate and silica powder. The CVR process was carried out in nitrogen atmosphere at 175$0^{\circ}C$ and 185$0^{\circ}C$. From the reduction of silica powder with graphite substrate, the SiO vapor was created, infiltrated into the graphite substrate, then, the SiC conversion layer was formed from the vapor-solid reaction of SiO and graphite. In the XRD pattern of conversion layer, it was confirmed that 3C $\beta$-SiC phase was created at 175$0^{\circ}C$ and 185$0^{\circ}C$. Also, in the back scattered image of cross-sectional conversion layer, it was found that the conversion layer was easily formed at 185$0^{\circ}C$, the interface of graphite substrate and SiC layer was observed. It was though that the coke particle size and density of graphite substrate mainly affect the XRD pattern and microstructure of SiC conversion layer. In the oxidation test of 100$0^{\circ}C$, the SiC converted graphites exhibited good oxidation resistance compared with the unconverted graphites.

  • PDF

Quantitative analysis of formation of oxide phases between SiO2 and InSb

  • Lee, Jae-Yel;Park, Se-Hun;Kim, Jung-Sub;Yang, Chang-Jae;Kim, Su-Jin;Seok, Chul-Kyun;Park, Jin-Sub;Yoon, Eui-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.162-162
    • /
    • 2010
  • InSb has received great attentions as a promising candidate for the active layer of infrared photodetectors due to the well matched band gap for the detection of $3{\sim}5\;{\mu}m$ infrared (IR) wavelength and high electron mobility (106 cm2/Vs at 77 K). In the fabrication of InSb photodetectors, passivation step to suppress dark currents is the key process and intensive studies were conducted to deposit the high quality passivation layers on InSb. Silicon dioxide (SiO2), silicon nitride (Si3N4) and anodic oxide have been investigated as passivation layers and SiO2 is generally used in recent InSb detector fabrication technology due to its better interface properties than other candidates. However, even in SiO2, indium oxide and antimony oxide formation at SiO2/InSb interface has been a critical problem and these oxides prevent the further improvement of interface properties. Also, the mechanisms for the formation of interface phases are still not fully understood. In this study, we report the quantitative analysis of indium and antimony oxide formation at SiO2/InSb interface during plasma enhanced chemical vapor deposition at various growth temperatures and subsequent heat treatments. 30 nm-thick SiO2 layers were deposited on InSb at 120, 160, 200, 240 and $300^{\circ}C$, and analyzed by X-ray photoelectron spectroscopy (XPS). With increasing deposition temperature, contents of indium and antimony oxides were also increased due to the enhanced diffusion. In addition, the sample deposited at $120^{\circ}C$ was annealed at $300^{\circ}C$ for 10 and 30 min and the contents of interfacial oxides were analyzed. Compared to as-grown samples, annealed sample showed lower contents of antimony oxide. This result implies that reduction process of antimony oxide to elemental antimony occurred at the interface more actively than as-grown samples.

  • PDF

Bond Strength of Wafer Stack Including Inorganic and Organic Thin Films (무기 및 유기 박막을 포함하는 웨이퍼 적층 구조의 본딩 결합력)

  • Kwon, Yongchai;Seok, Jongwon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.619-625
    • /
    • 2008
  • The effects of thermal cycling on residual stresses in both inorganic passivation/insulating layer that is deposited by plasma enhanced chemical vapor deposition (PECVD) and organic thin film that is used as a bonding adhesive are evaluated by 4 point bending method and wafer curvature method. $SiO_2/SiN_x$ and BCB (Benzocyclobutene) are used as inorganic and organic layers, respectively. A model about the effect of thermal cycling on residual stress and bond strength (Strain energy release rate), $G_c$, at the interface between inorganic thin film and organic adhesive is developed. In thermal cycling experiments conducted between $25^{\circ}C$ and either $350^{\circ}C$ or $400^{\circ}C$, $G_c$ at the interface between BCB and PECVD $ SiN_x $ decreases after the first cycle. This trend in $G_c$ agreed well with the prediction based on our model that the increase in residual tensile stress within the $SiN_x$ layer after thermal cycling leads to the decrease in $G_c$. This result is compared with that obtained for the interface between BCB and PECVD $SiO_2$, where the relaxation in residual compressive stress within the $SiO_2$ induces an increase in $G_c$. These opposite trends in $G_cs$ of the structures including either PECVD $ SiN_x $ or PECVD $SiO_2$ are caused by reactions in the hydrogen-bonded chemical structure of the PECVD layers, followed by desorption of water.

Deposition and Characterization of $HfO_2/SiNx$ Stack-Gate Dielectrics Using MOCVD (MOCVD를 이용한 $HfO_2/SiNx$ 게이트 절연막의 증착 및 물성)

  • Lee Taeho;Oh Jaemin;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.29-35
    • /
    • 2004
  • Hafnium-oxide gate dielectric films deposited by a metal organic chemical vapor deposition technique on a $N_2-plasma$ treated SiNx and a hydrogen-terminated Si substrate have been investigated. In the case of $HfO_2$ film deposited on a hydrogen-terminated Si substrate, suppressed crystallization with effective carbon impurity reduction was obtained at $450^{\circ}C$. X-ray photoelectron spectroscopy indicated that the interface layer was Hf-silicate rather than phase separated Hf-silicide and silicon oxide structure. Capacitance-voltage measurements show equivalent oxide thickness of about 2.6nm for a 5.0 nm $HfO_2/Si$ single layer capacitor and of about 2.7 nm for a 5.7 nm $HfO_2/SiNx/Si$ stack capacitor. TEM shows that the interface of the stack capacitor is stable up to $900^{\circ}C$ for 30 sec.

  • PDF

Computer simulation for the effects of inserting the textured ZnO and buffer layer in the rear side of ZnO/nip-SiC: H/metal type amorphous silicon solar cells (Zno/nip-SiC:H/금속기판 구조 비정질 실리콘 태양전지의 후면 ZnO 및 완충층 삽입 효과에 대한 컴퓨터 수치해석)

  • Jang, Jae-Hoon;Lim, Koeng-Su
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1277-1279
    • /
    • 1994
  • In the structure of ZnO/nip-SiC: H/metal substrate amorphous silicon (a-Si:H) solar cells, the effects of inserting a rear textured ZnO in the p-SiC:H/metal interface and a graded bandgap buffer layer in the i/p-SiC:H have been analysed by computer simulation. The incident light was taken to have an intensity of $100mW/cm^2$(AM-1). The thickness of the a-Si:H n, ${\delta}$-doped a-SiC:H p, and buffer layers was assumed to be $200{\AA},\;66{\AA}$, and $80{\AA}$, respectively. The scattering coefficients of the front and back ZnO were taken to be 0.2 and 0.7, respectively. Inserting the rear buffer layer significantly increases the open circuit voltage($V_{oc}$) due to reduction of the i/p interface recombination rate. The use of textured ZnO markedly improves collection efficiency in the long wavelengths( above ${\sim}550nm$ ) by back scattering and light confinement effects, resulting in dramatic enhancement of the short circuit current density($J_{sc}$). By using the rear buffer and textured ZnO, the i-layer thickness of the ceil for obtaining the maximum efficiency becomes thinner(${\sim}2500{\AA}$). From these results, it is concluded that the use of textured ZnO and buffer layer at the backside of the ceil is very effective for enhancing the conversion efficiency and reducing the degradation of a-Si:H pin-type solar cells.

  • PDF

Effects of Static Softening on Hot Workability of $SiC_P$/A1-Si COmposites ($SiC_P$/A1-Si 복합재료의 정적연화가 열간가공성에 미치는 영향)

  • 고병철;전정식;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.172-180
    • /
    • 1995
  • Isothermal interrupted deformation behavior of 10vol.%SICp/AI-Si composites was investigated by hot torsion test at the temperature ranges from 27$0^{\circ}C$ to 43$0^{\circ}C$ and at strain rate range of 1.26X10-2~2.16X10-1/sec. With increasing pass strain, flow stresses were high compared to continuous deformation condition. Fractional softening was increased with temperature imterruption time and pass strain. Fractional softening of 10vol.%SiCp/AI-Si composites was lower than that of AI-Si matrix at 37$0^{\circ}C$. However at high temperature of 43$0^{\circ}C$, SiC particle promoted static softening, diminishing the dislocation density at the interface of AI-Si matrix and reinforcements, then this resulted in higher fractional softening in composites. Both of failure strain improved reducing the fracture of SiC particle and Si precipitates above 32$0^{\circ}C$, however at low temperature of 27$0^{\circ}C$, the softening effect by interrupted deformation was found to be negligible.

  • PDF

Formation of $CoSi_2$ Film and Double Heteroepitaxial Growth of $Si/epi-CoSi_2/Si$(111) by Solid Phase Epitaxy (고상 에피택시에 의한 초박막 $CoSi_2$ 형성과 $Si/epi-CoSi_2/Si$(111)의 이중헤테로 에피택셜 성장)

  • Choi, Chi-Kyu;Kang, Min-Sung;Moon, Jong;Hyun, Dong-Geul;Kim, Kun-Ho;Lee, Jeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 1998
  • Epitaxial ultrathin films of $CoSi_2$ and double heteroepitaxial structure of Si/$CoSi_2$/Si(lll) were prepared on Si(111)-$7\times{7}$ substrate by in situ solid-phase epitaxy in a ultrahigh vacuum(LHV). The phase, chemical composition, crystallinity, and the microsructure of the Si/$CoSi_2$/Si(lll) interface were investigated by 2-MeV $^4He^{++}$ ion backscattering spectrometry, X-ray diffraction, and high-resolution transmission electron microscopy. The growth mode of the Co film was the Stransky-Krastanov type with texture when the substrate temperature was room temperature. A-type $CoSi_2$ ultrathin film was grown by deposition of about 50A Co on Si(ll1)-$7\times{7}$ substrate followed by in situ annealing at $700^{\circ}C$ for 10 min. The matching face relationships were $CoSi_2$[110]//Si[110] and $CoSi_2$(002)//Si(002) with no misorientation angle. The A-type $CoSi_2$/Si(lll) interface was abrupt and coherent. The best epi-Si/epi-$CoSi_2$2(A-type)/Si(lll) structure was obtained by deposition of Si film on the CoSii at $500^{\circ}C$ followed by in situ annealing at $700^{\circ}C$ for 10 min in UHV.

  • PDF

Electrical and Structural Properties of $LiNbO_3/Si$ Structure by RF Sputtering Method (RF 스퍼터링법을 이용한 $LiNbO_3/Si$구조의 전기적 및 구조적 특성)

  • Lee, Sang-Woo;Kim, Kwang-Ho;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.106-110
    • /
    • 1998
  • The $LiNbO_3$ thin films were prepared directly on Si(100) substrates by conventional RF magnetron spurttering system for nonvolatile memory applications. RTA(Rapid Thermal Annealing) treatment was performed for as-deposited films in an oxygen atmosphere at 600 $^{\circ}C$ for 60 s. The rapid thermal annealed films were changed to poly-crystalline ferroelectric nature from amorphous of as-deposition. The resistivity of the ferroelectric $LiNbO_3$ film was increased from a typical value of $1{\sim}2{\times}10^8{\Omega}{\cdot}cm$ before the annealing to about $1{\times}10^{13}{\Omega}{\cdot}cm$ at 500 kV/cm and reduced the interface state density of the $LiNbO_3/Si$ (100) interface to about $1{\times}10^{11}/cm^2{\cdot}eV$. Ferroelectric hysteresis measurements using a Sawyer-Tower circuit yielded remanent polarization ($P_r$) and coercive field ($E_c$) values of about 1.2 ${\mu}C/cm^2$ and 120 kV/cm, respectively.

  • PDF