• Title/Summary/Keyword: c-Axis orientation

Search Result 361, Processing Time 0.031 seconds

The growth YMnO$_3$ single crystals using a floating zone method (부유대용융법에 의한 YMnO$_3$단결정 성장)

  • 권달회;강승구;김응수;김유택;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.279-285
    • /
    • 2000
  • High quality crystals of $YMnO_3$, which is interested in non-volatile memory device application, were grown by the floating zone method. Optimum condition for powder synthesis was established to be $1200^{\circ}C$ for 10 hrs and optimum condition for sintering of $YMnO_3$feed-rod was established to be $1500^{\circ}C$ for 10hrs respectively. It was found from non-seeded growth experiment that $YMnO_3$crystal was grown preferentially to the [1010] orientation. The $YMnO_3$single crystal, which was grown to the direction of perpendicular to C-axis, was typically 5mm in diameter, 50 mm in length and showed dark-blue color.

  • PDF

Effects of Gas Mixing Ratio on the Properties of Thin Films in the ZnO Synthesis by MOCVD (MOCVD에 의한 ZnO 합성에서 기체혼합비가 박막의 물성에 미치는 영향)

  • SeoMoon, Kyu;Lee, JongIn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.109-113
    • /
    • 2013
  • ZnO thin films were synthesized on Si substrates by MOCVD using diethyl zinc as a precursor. Effects of $O_2$/DEZ gas mixing ratio on the growth rate, surface morphology, preferred orientation, and electrical properties of the ZnO thin films were investigated with SEM, XRD, and Hall measurement. The surface reflectance variations of ZnO thin films were analyzed using laser-photometer apparatus. As the $O_2$/DEZ mixing ratio increased, growth rate and $I_{(002)}/I_{(101)}$ in XRD of ZnO thin films decreased, and the crystal structure was changed from columnar to planar structure. All ZnO films deposited at various CVD conditions exhibited c-axis (002) plane preferred orientation. The electrical properties of ZnO thin films mainly depended on the carrier mobility.

The Preparation of ZnO Piezo-electric Thin Film for Surface Acoustic Wave Filter (탄성표면파 필터용 ZnO 압전 박막의 제조)

  • Lee, Dong-Yoon;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.10-14
    • /
    • 2005
  • Zinc Oxide(ZnO) thin films on Si (100) substrates were deposited by RF magnetron reactive sputtering. The characteristics of zinc oxide thin films with changing sputtering conditions such as argon/oxygen gas ratios, RF power, and substrate temperature, chamber pressure and target-substrate distance were investigated. To analyze a crystallographic properties of the films, $\theta/2{\theta}$ mode X -ray diffraction, SEM, and AFM analyses. C-axis preferred orientation, resistivity, and surface roughness highly depended on Ar/$O_2$ gas ratios. The resistivity of ZnO thin films rapidly increased with increasing oxygen ratio and the resistivity value of $9{\times}10^7\;{\Omega}cm$ was obtained at a working pressure of 10 mTorr with Ar/$O_2$=50/50. The surface roughness was also improved with increasing oxygen ratio and the ZnO films deposited with Ar/$O_2$=50/50 showed the excellent roughness value of $28.7{\AA}$.

  • PDF

Effect of Hydrogen Partial Pressure Ratio on Electrical and Structural Properties of ZnO Thin Film (ZnO 박막의 전기적 구조적 특성에 미치는 수소 분압비의 영향)

  • Lee, Sung-Hun;Shin, Min-Geun;Byon, Eung-Sun;Kim, Do-Geun;Jeon, Sang-Jo;Koo, Bon-Heun
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.6
    • /
    • pp.250-254
    • /
    • 2006
  • Effect of hydrogen partial pressure ratio on the structural and electrical properties of highly c-axis oriented ZnO films deposited by oxygen ion-assisted pulsed filtered vacuum arc at a room temperature was investigated. The hydrogen partial pressure ratio were $1.4%\sim9.8%$ at 40% oxygen pressure ratio. The conductivity of ZnO:H films was increased from 1.4% up to 4.2% due to relatively high carrier mobility caused by improvement of crystallinity While the conductivity of ZnO:H films were decreased over than 4.2% and (0002) orientation was also deteriorated. The lowest resistivity of ZnO:H films was $2.5{\times}10^{-3}\;{\Omega}{\cdot}cm$ at 4.2% of hydrogen pressure ratio. Transmittance of ZnO:H films in visible range was 85% which is lower than that of undoped ZnO films because of declined preferred orientation.

The Effect of Si Underlayer on the Magnetic Properties and Crystallographic Orientatation of CoCr(Mo) Thin Film (CoCr(Mo) 박막의 자기적 특성 및 미세구조에 미치는 Si 하지층의 영향)

  • 이호섭;남인탁
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.256-262
    • /
    • 1999
  • Sputter deposited CoCr(Mo)/Si film were studied with emphasis on the correlation between magnetic properties and crystallographic orientation. The perpendicular coercivities of CoCr films decreased with Si underlayer thickness, whereas those of CoCrMo films increased with Si underlayer thickness. It has been explained that additions of the larger atomic radius Mo atoms in CoCr films impedes crystal growth resulting in a decrease in grain size, thus this small grain size may induce high perpendicular coercivity. The c-axis alignment of CoCrMo film was improved due to addition of 2at.%Mo. It means CoCrMo layer grow self-epitaxial directly from orientation and structure of Si underlayer when the main layer grow on underlayer.

  • PDF

Growth behavior of YBCO films on STO substrates with ZnO nanorods

  • Oh, Se-Kweon;Lee, Cho-Yeon;Jang, Gun-Eik;Kim, Kyoung-Won;Hyun, Ok-Bae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.16-19
    • /
    • 2009
  • The influence of nanorods grown on substrate prior to YBCO deposition has been investigated. We studied the microstructures and characteristic of $YBa_2Cu_3O_{7-\delta}$ films fabricated on $SrTiO_3$ (100) substrates with ZnO nanorods as one of the possible pinning centers. The growth density of ZnO nanorods was modulated through Au nanoparticles synthesized on top of the STO(100) substrates with self assembled monolayer. The density of Au nanoparticles is approximately $240{\sim}260\;{\mu}m^{-2}$ with diameters of 41~49 nm. ZnO nanorods were grown on Au nanoparticles by hot-walled PLD with Au nanoparticles. Typical size of ZnO nanorod was around 179 nm in diameter and $2{\sim}6\;{\mu}m$ in length respectively. The ZnO nanorods have apparently randomly aligned and exhibit single-crystal nature along (0002) growth direction. Our preliminary results indicate that YBCO film deposited directly on STO substrate shows the c-axis orientation while YBCO films with ZnO nanorods exhibit any mixed phases without any typical crystal orientation.

Characteristics of ZnO thin films by RF magnetron sputtering for FBAR application (RF 마그네트론 스퍼터링을 이용한 FBAR 소자용 ZnO 박막의 특성)

  • Kim, S.Y.;Lee, N.H.;Kim, S.G.;Park, S.H.;Jung, M.G.;Shin, Y.H.;Ji, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1523-1525
    • /
    • 2003
  • Due to the rapid development of wireless networking system, researches on the communication devices are mainly focus on microwave frequency devices such as filters, resonators, and phase shifters. Among them, Film bulk acoustic resonator (FBAR) has been paid extensive attentions for their high performance. In this research, ZnO thin films were deposited by RF-magnetron sputtering on Al/$SiO_2$/Si wafer and then crystalline properties and surface morphology were examined. To measure crystalline structure and surface morphology X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) were employed. It was showed that crystalline properties of ZnO thin films were strongly dependant on the deposition conditions. As increasing the deposition temperature and the deposition pressures, the peak intensities of ZnO(002) plane were increased until $300^{\circ}C$, then decreased rapidly. At the sputtering conditions of RF power of 213 W and working pressure of 15 m Torr, ZnO film had excellent c-axis orientation, surface morphology, and adhesion to the substrate. In conclusion we optimized smooth surface with very small grains as well as highly c-axis oriented ZnO film for FBAR applications.

  • PDF

A Study on the Development of Two Axes Sun Tracking System for the Parabolic Dish Concentrator (Parabolic Dish형 태양열 집열기를 위한 2축 태양추적장치의 개발에 관한 연구)

  • Park, Y.C.;Kang, Y.H.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.81-91
    • /
    • 1999
  • The work presented here is a design and development of sun tracking system for the parabolic dish concentrator. Parabolic dish concentrator is mounted on azimuth and elevation tracking mechanism, and controlled to track the sun with computed and measured sun positions. Sun tracking mechanism is composed of 1/30000 speed reducer(3 stages) and 400W AC servomotor for each axis. The nominal tracking speed of each axis is ${\pm}0.6^{\circ}/sec$ and the system has a driving range of $340^{\circ}$ in azimuth and of $135^{\circ}$ in elevation. Sun tracking control system consists of sun sensor, wind speed and direction measurement system, AC servomotor position control system and personal computer as a master controller. Sun sensor detects the sun located within ${\pm}50^{\circ}$ measured from the sun sensor normal direction. Computer computes the sun position, sunrise and sunset times and controls the orientation of parabolic dish concentrator through the AC servomotor position control system. It also makes a decision of whether the system should follow the sun or not based on the information collected from sun sensor and wind speed and direction measurement system. The sun tracking system developed in this work is implemented for the experimental work and shows a good sun tracking performance.

  • PDF

RF-magnetron sputtering 방법으로 성장시킨 Ga-doped ZnO 박막의 성장 온도 변화에 따른 영향

  • Kim, Yeong-Lee;U, Chang-Ho;An, Cheol-Hyeon;Bae, Yeong-Suk;Gong, Bo-Hyeon;Kim, Dong-Chan;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.9-9
    • /
    • 2009
  • 1 wt % Ga-dope ZnO (ZnO:Ga) thin films with n-type semiconducting behavior were grown on c-sapphire substrates by radio frequency magnetron sputtering at various growth temperatures. The room temperature grown ZnO:Ga film showed the faint preferred orientation behavior along the c-axis with small domain size and high density of stacking faults, despite limited surface diffusion of the deposited atoms. The increase in the growth temperature in the range between $300\sim550^{\circ}C$ led to the granular shape of epitaxial ZnO:Ga films due to not enough thermal energy and large lattice mismatch. The growth temperature above $550^{\circ}C$ induced the quite flat surface and the simultaneous improvement of electrical carrier concentration and carrier mobility, $6.3\;\times\;10^{18}/cm^3$ and $27\;cm^2/Vs$, respectively. In addition, the increase in the grain size and the decrease in the dislocation density were observed in the high temperature grown films. The low-temperature photoluminescence of the ZnO:Ga films grown below $450^{\circ}C$ showed the redshift of deep-level emission, which was due to the transition from $Zn_j$ to $O_i$ level.

  • PDF

Study on the Properties of ZnO:Ga Thin Films with Substrate Temperatures (기판 온도에 따른 ZnO:Ga 박막의 특성)

  • Kim, Jeong-Gyoo;Park, Ki-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.794-799
    • /
    • 2017
  • Ga-doped ZnO (GZO) films were deposited by an RF magnetron sputtering method on glass substrates using ZnO as a target containing 5 wt% $Ga_2O_3$ powder (for Ga doping). The structural, electrical, and optical properties of the GZO thin films were investigated as a function of the substrate temperatures. The deposition rate decreased with increasing substrate temperatures from room temperature to $350^{\circ}C$. The films showed typical orientation with the c-axis vertical to the glass substrates and the grain size increased up to a substrate temperature of $300^{\circ}C$ but decreased beyond $350^{\circ}C$. The resistivity of GZO thin films deposited at the substrate temperature of $300^{\circ}C$ was $7{\times}10^{-4}{\Omega}cm$, and it showed a dependence on the carrier concentration and mobility. The optical transmittances of the films with thickness of $3,000{\AA}$ were above 80% in the visible region, regardless of the substrate temperatures.