Effect of Hydrogen Partial Pressure Ratio on Electrical and Structural Properties of ZnO Thin Film

ZnO 박막의 전기적 구조적 특성에 미치는 수소 분압비의 영향

  • Lee, Sung-Hun (Surface Engineering Research Center, Korea Institute of Machinery and Materials) ;
  • Shin, Min-Geun (Changwon National University) ;
  • Byon, Eung-Sun (Surface Engineering Research Center, Korea Institute of Machinery and Materials) ;
  • Kim, Do-Geun (Surface Engineering Research Center, Korea Institute of Machinery and Materials) ;
  • Jeon, Sang-Jo (Busan Center, Defense Agency for Technology and Quality) ;
  • Koo, Bon-Heun (Changwon National University)
  • 이성훈 (한국기계연구원 표면기술연구센터) ;
  • 신민근 (창원대학교 전자재료실험실) ;
  • 변응선 (한국기계연구원 표면기술연구센터) ;
  • 김도근 (한국기계연구원 표면기술연구센터) ;
  • 전상조 (국방기술품질원 부산센터) ;
  • 구본흔 (창원대학교 전자재료실험실)
  • Published : 2006.12.31

Abstract

Effect of hydrogen partial pressure ratio on the structural and electrical properties of highly c-axis oriented ZnO films deposited by oxygen ion-assisted pulsed filtered vacuum arc at a room temperature was investigated. The hydrogen partial pressure ratio were $1.4%\sim9.8%$ at 40% oxygen pressure ratio. The conductivity of ZnO:H films was increased from 1.4% up to 4.2% due to relatively high carrier mobility caused by improvement of crystallinity While the conductivity of ZnO:H films were decreased over than 4.2% and (0002) orientation was also deteriorated. The lowest resistivity of ZnO:H films was $2.5{\times}10^{-3}\;{\Omega}{\cdot}cm$ at 4.2% of hydrogen pressure ratio. Transmittance of ZnO:H films in visible range was 85% which is lower than that of undoped ZnO films because of declined preferred orientation.

Keywords

References

  1. D. R. Clarke, J. Am. Ceram. Soc., 82 (1999) 485 https://doi.org/10.1111/j.1151-2916.1999.tb01793.x
  2. C.-H. Lee, S.-I. Kim, J. Kor. Ceramic Soc., 41 (2004) 102 https://doi.org/10.4191/KCERS.2004.41.2.102
  3. J. Hinze, K. Ellmer, J. Appl. Phys., 88 (2000) 2443 https://doi.org/10.1063/1.1288162
  4. D. R. Clarke, J. Am. Ceram. Soc., 82 (1999) 485 https://doi.org/10.1111/j.1151-2916.1999.tb01793.x
  5. J. H. Choi, H. Tabata, T. Kawai, J. Cryst. Growth 226 (2001) 493 https://doi.org/10.1016/S0022-0248(01)01388-4
  6. X. L. Xu, S. P. Lau, B. K. Tay, Thin Solid Films 398-399 (2001) 244 https://doi.org/10.1016/S0040-6090(01)01452-3
  7. K. Matsubara, P. Fons, K. Iwata, A. Yamada, S. Niki, Thin Solid Films 422 (2002) 176 https://doi.org/10.1016/S0040-6090(02)00965-3
  8. J. J. Cuomo, J. Appl. Phys. 70 (1991) 1706 https://doi.org/10.1063/1.349540
  9. P. K. Song, Y. Shigesato, I. Yasui, C. W. Ow-Yang, D. C. Paine, Jpn. J. Appl. Phys., 37 (1998) 1870 https://doi.org/10.1143/JJAP.37.1870
  10. M. G. Shin, E. Byon, S. Lee, D.-G. Kim, S. J. Jeon, B. H. Koo, J. Kor. Inst. Surf. Eng., 38 (2005) 193
  11. H. Nanto, T. Minami, J. Appl. Phys. 55 (1983) 1029
  12. M. L. Addonizio, C. Privato, Thin solid films 349 (1999) 93 https://doi.org/10.1016/S0040-6090(99)00186-8
  13. F. Ruske, V. Sittinger, R. Rix, Surf. Coat. Technol., 200 (2005) 236 https://doi.org/10.1016/j.surfcoat.2005.01.019
  14. S. H. Keshmiri, M. Rezaee Rokn-Abadi, Thin Solid Films, 382 (2001) 230 https://doi.org/10.1016/S0040-6090(00)01776-4
  15. L.Y. Chen, W. H., Wang, J. J., Hong, F. C. N., Su, Y. K., Applied Physics Letters, 85 (2004) 5628 https://doi.org/10.1063/1.1835991