• Title/Summary/Keyword: c/c composite

Search Result 3,904, Processing Time 0.031 seconds

Physical and Mechanical Properties of The Lignin-based Carbon Nanofiber-reinforced Epoxy Composite (에폭시 강화 리그닌 기반 나노탄소섬유 복합재료의 특성)

  • Youe, Won-Jae;Lee, Soo-Min;Lee, Sung-Suk;Kim, Yong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.406-414
    • /
    • 2016
  • The lignin-based carbon nanofiber reinforced epoxy composite has been prepared by immersing carbon nanofiber mat in epoxy resin solution in order to evaluate the physical and mechanical properties. The thermal and mechanical properties of the carbon nanofiber reinforced epoxy composite were analyzed using thermogravimetric analysis (TGA), differential scanning calorimeter (DSC) and tensile tester. It was found that the thermal properties of the carbon nanofiber reinforced epoxy composite improved, with its glass-transition temperature ($T_g$) increased from $90.7^{\circ}C$ ($T_g$ of epoxy resin itself) to $106.9^{\circ}C$. The tensile strengths of carbon nanofiber mats made from both lignin-g-PAN copolymer and PAN were 7.2 MPa and 9.4 MPa, respectively. The resulting tensile strength of lignin-based carbon nanofiber reinforced epoxy composite became 43.0 MPa, the six times higher than that of lignin-based carbon nanofiber mats. The carbon nanofibers were pulled out after the tensile test of the carbon nanofiber reinforced epoxy composite due to high tensile strength (478.8 MPa) of an individual carbon nanofiber itself as well as low interfacial adhesion between fibers and matrices, confirmed by the SEM analysis.

Effects of Composite Floor Slab on Seismic Performance of Welded Steel Moment Connections (철골모멘트 용접접합부의 내진성능에 미치는 합성슬래브의 영향)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.385-396
    • /
    • 2014
  • Traditionally, domestic steel design and construction practice has provided extra shear studs to moment frame beams even when they are designed as non-composite beams. In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange side was prevalent. The upward moving of the neutral axis due to the composite action between steel beam and floor deck was speculated to be one of the critical causes. In this study, full-scale seismic testing was conducted to investigate the side effects of the composite action in steel seismic moment frames. The specimen PN700-C, designed following the domestic connection and floor deck details, exhibited significant upward shift of the neutral axis under sagging (or positive) moment, thus producing high strain demand on the bottom flange, and showed a poor seismic performance because of brittle fracture of the beam bottom flange at 3% story drift. The specimen DB700-C, designed by using RBS connection and with the details of minimized floor composite action, exhibited superior seismic performance, without experiencing any fracture or concrete crushing, almost identical to the bare steel counterpart (specimen DB700-NC). The results of this study clearly indicate that the beams and connections in seismic steel moment frames should be constructed to minimize the composite action of a floor deck if possible.

Composite MIG Head for High Definition VCRs (고화질 VCR용 복합 MIG HEAD)

  • 권상일
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.1
    • /
    • pp.7-14
    • /
    • 1996
  • According to demands of high density and wide band magnetic recording systems, a composite MIG head was developed. This head has the sufficient performance for use of a SD VCR : its characteristics are a good recoding performance, a low rubbing noise, a good frequency dependence of efficiency, and a good compatibility with ME tape. In a SD VCR system, the C/N value of a composite MIG head at 20.92MHz was 51 dB.

  • PDF

A Study on the Mechanism for the Formation of Partices in electroless Ni Composite Coating(II) (무전해 Ni 복합도금 과정에서 분말의 공석기구에 대한 연구(II))

  • 이원해;이승평
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.2
    • /
    • pp.78-87
    • /
    • 1989
  • Mechanism of formation of electroless composite coatings is similar to that of electrodeposited composite coating, but the amount of particles entraped in electroless coating is higher that the one of electrodeposited coatings. The methol of entrapment by the metal for SiC and Al2O3 particles is different from that for WC particles. In the former case the particles are gracually engulfed by the depositing metal, wheran with WC a metal envelope is rapidly fomed around each particles. This difference can be attributed to the difference in electrical resistivity of the particles. Inclusion density of SiC and Al2O3 particles during copeposition depend on the particle size, agitation condition, vabration conditions and electrolyte temperatures.

  • PDF

Flutter Safety Analysis of a Composite Smart UAV with T-tail Configuration (T-형 꼬리날개를 갖는 복합재 스마트 무인기의 플러터 안전성 해석)

  • Kim, D.H.;Yang, Y.J.;Jung, S.U.;Kim, S.J.;Choi, S.C.;Kim, S.C.;Shin, J.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.1
    • /
    • pp.20-31
    • /
    • 2005
  • In this study, subsonic flutter analyses have been conducted for a composite smart UAV with T-tail configuration at the critical flight condition. Detailed three-dimensional finite element model for dynamic analysis is constructed including its nonstructural elements corresponding to installed electronic equipments and fuels. Computational structural dynamics and aeroelastic techniques are conducted using MSC/NASTRAN and originally developed in-house codes. The results for fundamental vibration characteristics and flutter instabilities are presented and compared to each other for different fuel conditions.

  • PDF

Introduction to Ionic Polymer-Metal Composite Actuators and Their Applications (이온성 고분자-금속 복합체 작동기의 소개 및 이의 응용)

  • Jeon, Jin-Han;Oh, Il-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1242-1250
    • /
    • 2011
  • Several biomimetic artificial muscles including the electro-active synthetic polymers (SSEBS, PSMI/PVDF, SPEEK/PVDF, SPSE, XSPSE, PVA/SPTES and SPEI), bio-polymers (Bacterial Cellulose and Cellulose Acetate) and nano-composite (SSEBS-CNF, SSEBS-$C_{60}$, Nafion-$C_{60}$ and PHF-SPEI) actuators are introduced in this paper. Also, some applications of the developed biomimetic actuators are explained including biomimetic robots and biomedical active devices. Present results show that the developed electro-active polymer actuators with high-performance bending actuation can be promising smart materials applicable to diverse applications.

Synthesis of poly(dialkyl or monoalkyl)silanes as silicon carbide precursors for ceramic matrix composites (탄화규소 선구물질로서의 폴리(디알킬 또는 모노알킬)실란들의 합성과 세라믹 복합체 응용)

  • Lee, Gyu-Hwan
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • Polyalkylsilanes such as poly(dialkyl)silanes and poly(monoalkyl)silanes were synthesized by sonochemical dechlorination-condensation method from (dialkyl or monoalkyl)chlorosilanes with sodium metal. Those polyalkylsilanes were analyzed for the properties such as thermal behaviors from TGA analysis and obtained ceramic yields of 10-20% for poly(dialkyl)silanes and 40-60% for poly(monoalkyl)silanes. Ceramic composite discs were prepared by the combined mixture of polyalkylsilanes and SiC powder and were tested by TGA and analyzed by SEM and XRD for the application as binder for ceramic composite precursors.

A C0 finite element investigation for buckling of shear deformable laminated composite plates with random material properties

  • Singh, B.N.;Iyengar, N.G.R.;Yadav, D.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.1
    • /
    • pp.53-74
    • /
    • 2002
  • Composites exhibit larger dispersion in their material properties compared to conventional materials due to larger number of parameters associated with their manufacturing processes. A $C^0$ finite element method has been used for arriving at an eigenvalue problem using higher order shear deformation theory for initial buckling of laminated composite plates. The material properties have been modeled as basic random variables. A mean-centered first order perturbation technique has been used to find the probabilistic characteristics of the buckling loads with different edge conditions. Results have been compared with Monte Carlo simulation, and those available in literature.

Analysis of Mechanical Characteristics of ionic Polymer-Metal Composite Actuators Fabricated by Casting Method (캐스팅 방법에 의해 제작한 이온성 고분자-금속 복합체 액추에이터의 기계적 특성 분석)

  • 이승기;김병목;김병규;박정호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.3
    • /
    • pp.144-151
    • /
    • 2003
  • IPMC(Ionic Polymer-Metal Composite) is promising candidate material for bio-related actuators mainly due to its biocompatibility and wet and soft properties. The widely used commercialized Nafion film has a few kinds of fixed thicknesses but more various film thicknesses are required for extensive applications. Especially for the enhanced force as an actuator, the thick film is essential. Various Nafion films with thickness of 0.4-1.2mm have been prepared by casting of liquid Nafion. Also, IPMC actuators using casted Nafion films have been fabricated and the basic mechanical properties such as stiffness, displacement and force were measured and analyzed. These results can be used for the optimized design of actuators for different applications.

Characterization of Ionic-Polymer Metal Composite Actuators Varying Electroless Plating Method of Platinum (백금 무전해 도금 방법의 변화에 따른 이온성 고분자 및 금속 복합체 액추에이터의 특성 분석)

  • 차승은;김병목;조성환;이승기;박정호;김병규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.12
    • /
    • pp.601-607
    • /
    • 2002
  • IPMC(Ionic Polymer Metal Composite)actuators were optimized for producing improved forces by changing multiple parameters including repetition of number of plating, surface electroding and additive(PVP)-treatment on reduction. The platinum electrode is deposited on the surface of the material where platinum particle stay in a dense form that appears to introduce a significant level of surface electrode resistance. Actuation tests were performed for such IPMC actuators under a low voltage. The test results show that the lower surface-electrode resistance generates higher actuation capability in the IPMC actuators. In order to investigate relaxation behavior of bending and repeatability in dry condition, the IPMC was coated by$rubber(KRATON^{TM})$to minimize the effect of water evaporation from IPMC. This actuator can be used in air with surface coating to avoid membrane drying.