• 제목/요약/키워드: butyrylcholinesterase

검색결과 64건 처리시간 0.026초

마른진흙버섯 자실체의 Xanthine Oxidase, Cholinesterase 및 염증 저해 효과 (Anti-Xanthine Oxidase, Anti-Cholinesterase, and Anti-Inflammatory Activities of Fruiting Bodies of Phellinus gilvus)

  • 윤기남;장형석
    • 대한임상검사과학회지
    • /
    • 제50권3호
    • /
    • pp.225-235
    • /
    • 2018
  • 본 연구에서는 마른진흙버섯 자실체를 메탄올과 열수를 이용해 추출한 물질의 anti-xanthine oxidase, anti-cholinesterase 및 염증 저해 효과에 대한 연구를 수행하였다. 마른진흙버섯 자실체의 메탄올 추출물과 열수 추출물의 xanthine oxidase에 대한 저해효과는 양성대조군으로 사용한 allopurinol과 대등하게 높은 효과를 나타냈다. Acetylcholinesterase에 대한 메탄올 추출물의 1.0~2.0 mg/mL 농도에서의 저해활성은 양성대조군인 galanthamine과 유사하게 높았지만 butyrylcholinesterase에 대한 메탄올과 열수 추출물의 저해활성은 양성대조군에 비해 실험에 사용한 모든 농도범위에서 유의하게 낮았다. PC-12 세포에 glutamate의 처리에 의해 유도된 독성은 40 mg/mL와 100 mg/mL 농도의 메탄올 추출물과 100 mg/mL 농도의 열수추출물의 처리에 의해 크게 완화되어 PC-12 세포의 생존율이 유의하게 증가하는 것이 관찰되었다. 마른진흙버섯의 메탄올과 열수 추출물의 염증 저해 실험에서 RAW 264.7 대식세포에 메탄올 추출물을 2.0 mg/mL 농도로 처리하고 염증을 매개하는 LPS를 추가로 투여한 후 RAW 264.7 세포에 생성되는 NO를 측정한 결과, 양성대조군에 비해 3.37배 높은 저해효과를 나타냈고, 처리한 자실체 메탄올 추출물의 농도가 증가함에 따라 생성된 NO의 양이 현저하게 감소하는 경향을 나타내었다. 또한 기염제인 carrageenan에 의해 흰쥐 뒷발에 유도된 부종 저해 실험에서는 투여한 버섯 추출물의 농도가 증가함에 따라 흰쥐의 뒷발에 유도된 부종의 용적이 농도 의존적으로 감소하는 경향을 나타냈다. 따라서 마른진흙버섯 자실체에 함유된 물질은 acetylcholinesterase과 butyrylcholinesterase 등의 cholinesterase에 대한 저해작용과 glutamate에 의해 유도된 PC-12세포의 독성을 완화하고 또한 염증을 저해하는 효과를 나타내 기억력이 감퇴되는 초기 알츠하이머병과 염증을 완화하는 천연소염제로의 이용이 가능할 것으로 사료된다.

Phosalone의 활성화과정을 통한 acetylcholinesterase와 butyrylcholinesterase에 대한 활성 저해 (Inhibition of Acetylcholinesterase and Butyrylcholinesterase by Phosalone via Bioactivation)

  • 임금춘;한대성;허장현
    • Applied Biological Chemistry
    • /
    • 제38권2호
    • /
    • pp.174-178
    • /
    • 1995
  • 유기인계 살충제인 phosalone의 활성화과정을 통한 독성발현기작에서 cytochrome $P_{450}$의 역할을 조사하기 위하여 시험관 내와 생체 내 system을 이용하였다. Phosalone의 AChE와 BuChE에 대한 이분자 저해 속도상수$(k_i)$는 약 1$10^2\;M^{-1}{\cdot}min^{-1}$으로 측정되어 그 자체로는 저해력이 상당히 낮은 약제임이 관찰되었다. AChE 또는 BuChE/MFO coupling system에서는 $I_{50}$값이 control에서 각각 $3.7{\times}10^{-6}$, $2.5{\times}10^{-7}M$로 관찰되었고, cytochrome $P_{450}$의 조효소인 NADPH를 첨가한 oxidase에서는 $1.2{\times}10^{-8}$$6.0{\times}10^{-9}M$로 나타나 약 $40{\sim}300$배 정도의 활성화 효과가 관찰되었다. Cytochrome $P_{450}$의 특이적 저해제인 PB를 처리하였을때 저해곡선이 control쪽으로 이동하여 phosalone의 활성화과정에 cytochrome $P_{450}$이 관여하고 있슴이 확인되었다. 그러나 생체 내 실험에서 생쥐의 뇌 AChE 활성저해는 phosalone만을 투여한 경우 $I_{50}$이 170 mg/kg, PB를 전처리 하였을 경우에서 42.5 mg/kg으로 나타나 PB 처리에 의하여 오히려 약 4배의 상승효과가 관찰되었으며, 쥐 혈액에서의 AChE와 BuChE활성저해 결과는 PB 전처리가 phosalone의 저해 경향에 큰 영향을 주지 않는 것으로 나타나 시험관 내 실험에서의 결과와는 상이하게 나타났다.

  • PDF

A Chemical Component of the Marine Alga Ishige Okamurae

  • Kim, Eun-Sook;Choi, Byoung-Wook;Lee, Bong-Ho
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.255.3-256
    • /
    • 2003
  • Marine Algae of order Chordariales are rich resources of bioactive metabolites. Methanolic extracts of the brown alga /shige Okamurae exhibited potent antioxidative and butyrylcholinesterase(BChE) inhibitory effects. Bio-guided purification [solvent partition, ODS flash, silica flash, gel-filtration on Sephadex LH 20, ODS HPLC] of them gave a compound 1. Its structure was elucidated by detailed analysis of spectroscopic data of 1 and comparison of literature data. A variety of bioassay for 1 is in progress.

  • PDF

Influence of Toxoplasma gondii Acute Infection on Cholinesterase Activities of Wistar Rats

  • Tonin, Alexandre Alberto;da Silva, Aleksandro Schafer;Thorstenberg, Maria Luiza;Castilhos, Livia Gelain;Franca, Raqueli Teresinha;Leal, Daniela Bitencourt Rosa;Duarte, Marta Maria Medeiros Frescura;Vogel, Fernanda Silveira Flores;de La Rue, Mario L.;dos Anjos Lopes, Sonia Terezinha
    • Parasites, Hosts and Diseases
    • /
    • 제51권4호
    • /
    • pp.421-426
    • /
    • 2013
  • Several studies have shown the mechanisms and importance of immune responses against Toxoplasma gondii infection and the notable role of cholinesterases in inflammatory reactions. However, the association between those factors has not yet been investigated. Therefore, the aim of this study was to evaluate the acetylcholinesterase (AChE) activity in blood and lymphocytes and the activity of butyrylcholinesterase (BChE) in serum of rats experimentally infected with T. gondii during the acute phase of infection. For that, an in vivo study was performed with evaluations of AChE and BChE activities on days 5 and 10 post-infection (PI). The activity of AChE in blood was increased on day 5 PI, while in lymphocytes its activity was enhanced on days 5 and 10 PI (P<0.05). No significant difference was observed between groups regarding to the activity of BChE in serum. A positive (P<0.01) correlation was observed between AChE activity and number of lymphocytes. The role of AChE as an inflammatory marker is well known in different pathologies; thus, our results lead to the hypothesis that AChE has an important role in modulation of early immune responses against T. gondii infection.

Phenolic Profiles of Hardy Kiwifruits and Their Neuroprotective Effects on PC-12 and SH-SY5Y Cells against Oxidative Stress

  • Jeong, Ha-Ram;Kim, Kwan Joong;Lee, Sang Gil;Cho, Hye Sung;Cho, Youn-Sup;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.912-919
    • /
    • 2020
  • Hardy kiwifruits (Actinidia arguta Planch.) have high amounts of antioxidants, including ascorbic acid (vitamin C) and phenolics. The anti-cholinesterase activity and neuroprotective effects of three different cultivars of hardy kiwifruits, cv. Mansu (A. arguta × A. deliciosa), cv. Haeyeon (A. arguta), and cv. Chiak (A. arguta), on PC-12 and SH-SY5Y cells were evaluated. Extraction of phenolics and vitamin C was carried out using 80% (v/v) aqueous ethanol and metaphosphoric acid assisted with homogenization, respectively. Hardy kiwifruit of cv. Mansu showed higher total phenolic, total flavonoid, and vitamin C contents and antioxidant capacity compared to the other two cultivars of hardy kiwifruits, cv. Haeyeon and cv. Chiak. Analysis of high-performance liquid chromatography results revealed the presence of procyanidin B2, (-)-epicatechin, neochlorogenic acid, cryptochlorogenic acid, rutin, hyperoside, isoquercitrin, and astragalin in hardy kiwifruits. The three cultivars of hardy kiwifruits had a wide range of vitamin C content of 55.2-130.0 mg/100 g fresh weight. All three cultivars of hardy kiwifruits had protective effects on neuronal PC-12 and SH-SY5Y cells exposed to hydrogen peroxide by increasing cell viability and reducing intracellular oxidative stress. Furthermore, the hardy kiwifruits inhibited acetylcholinesterase and butyrylcholinesterase. Collectively, these results suggest that hardy kiwifruits rich in antioxidants like phenolics and vitamin C have good potential as functional materials in neuroprotective applications.

Neuroprotective Effects of Korean Red Pine (Pinus densiflora) Bark Extract and Its Phenolics

  • Kim, Ji-Won;Im, Sungbin;Jeong, Ha-Ram;Jung, Young Sung;Lee, Inil;Kim, Kwan Joong;Park, Seung Kook;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권5호
    • /
    • pp.679-687
    • /
    • 2018
  • Korean red pine (Pinus densiflora) is one of the major Pinus species in Korea. Red pine bark is removed prior to the chipping process in the wood industry and discarded as waste. However, red pine bark contains a considerable amount of naturally occurring phenolics, including flavonoids, and therefore may have a variety of biological effects. In this study, we investigated if Korean red pine bark extract (KRPBE) could protect neuronal PC-12 cells from oxidative stress and inhibit cholinesterase activity. Analysis of reversed-phase high-performance liquid chromatography results revealed four phenolics in KRPBE: vanillin, protocatechuic acid, catechin, and taxifolin. The total phenolic and flavonoid contents of KRPBE were 397.9 mg gallic acid equivalents/g dry weight (DW) and 248.7 mg catechin equivalents/g DW, respectively. The antioxidant capacities of KRPBE measured using ABTS, DPPH, and ORAC assays were 697.3, 521.8, and 2,627.7 mg vitamin C equivalents/g DW, respectively. KRPBE and its identified phenolics protected against $H_2O_2$-induced oxidative cell death in a dose-dependent manner. Acetylcholinesterase and butyrylcholinesterase, which degrade the neurotransmitter acetylcholine to terminate neurotransmission in synaptic clefts, were inhibited by treatment with KRPBE and its identified phenolics. Taken together, these results suggest that KRPBE and its constituent antioxidative phenolics are potent neuroprotective agents that can maintain cell viability under oxidative stress and inhibit cholinesterase activity.

Comparative Study of White and Steamed Black Panax ginseng, P. quinquefolium, and P. notoginseng on Cholinesterase Inhibitory and Antioxidative Activity

  • Lee, Mi-Ra;Yun, Beom-Sik;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • 제36권1호
    • /
    • pp.93-101
    • /
    • 2012
  • This study evaluated the anti-cholinesterases (ChEs) and antioxidant activities of white ginseng (WG) and black ginseng (BG) roots of Panax ginseng (PG), P. quinquefolium (PQ), and P. notoginseng (PN). Ginsenosides $Rg_1$, Re, Rf, $Rb_1$, Rc, $Rb_2$, and Rd were found in white PG, whereas Rf was not found in white PQ and Rf, Rc, and $Rb_2$ were not detected in white PN. The major ginsenoside content in steamed BG including $RK_3$, $Rh_4$, and 20(S)/(R)-$Rg_3$ was equivalent to approximately 70% of the total ginsenoside content. The WG and BG inhibited acetylcholinesteras (AChE) and butyrylcholinesterase (BChE) in a dose dependent manner. The efficacy of BG roots of PG, PQ, and PN on AChE and BChE inhibition was greater than that of the respective WG roots. The total phenolic contents and 2, 2-diphenyl-1-picryl-hydrazyl (DPPH) scavenging activity were increased by heat treatment. Among the three WG and BG, white PG and steamed black PQ have significantly higher contents of phenolic compounds. The best results for the DPPH scavenging activity were obtained with the WG and BG from PG. These results demonstrate that the steamed BG roots of the three studied ginseng species have both high ChEs inhibition capacity and antioxidant activity.

Tryptophan-derived Alkaloids from Hedera rhombea Fruits and Their Butyrylcholinesterase Inhibitory Activity

  • Ha, Manh Tuan;Park, Se Eun;Kim, Jeong Ah;Woo, Mi Hee;Choi, Jae Sue;Min, Byung Sun
    • Natural Product Sciences
    • /
    • 제28권3호
    • /
    • pp.138-142
    • /
    • 2022
  • Alzheimer's disease (AD) is the most common age-related neurodegenerative disease in industrialized countries. It is estimated that about 47 million people living with dementia and the number of cases will be tripled by 2050. However, the exact mechanism of AD is not known, and full therapy has still not been found. Various tryptophan-derived alkaloids have been reported as promising agents for the treatment of AD. In the present study, a series of tryptophan-derived alkaloids were isolated and characterized from the methanol extract of Hedera rhombea fruit. Based on the analysis of their observed and reported spectroscopic data, their structures were identified as N-[4'-hydroxy-(E)-cinnamoyl]-L-tryptophan (1), N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tryptophan (2), N-[4'-hydroxy-(E)-cinnamoyl]-L-tryptophan methyl ester (3), and N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tryptophan methyl ester (4). These compounds were screened for anti-Alzheimer activity via their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes in vitro. As a result, compounds 3 and 4 showed moderate BChE inhibition with IC50 values of 86.9 and 78.4 μM, respectively, compared to those of the positive control [berberine (IC50 = 11.5 μM)]. However, all four compounds did not show significant inhibition of the AChE enzyme. This is the first time, the AChE and BChE inhibitory activities of these tryptophan-derived alkaloids were investigated and reported.

Isolation of 6,6'-Bieckol from Grateloupia elliptica and its Antioxidative and Anti-Cholinesterase Activity

  • Lee, Bong Ho;Choi, Byoung Wook;Lee, Soo Young
    • Ocean and Polar Research
    • /
    • 제39권1호
    • /
    • pp.45-49
    • /
    • 2017
  • During the search for anticholinesterase compounds from marine organisms, we were able to isolate 6,6'-bieckol from a red alga, Grateloupia elliptica. This compound showed moderate acetylcholinesterase (AChE) inhibitory activity in a micromole range ($IC_{50}$ $44.5{\mu}M$). However, for butyrylcholinesterase (BuChE), a new target for the treatment of Alzheimer's disease (AD), it showed particularly potent inhibitory activity ($IC_{50}$ $27.4{\mu}M$), which is more potent compared to AChE. It also inhibits BACE-1, a new target for reducing the generation of ${\beta}-amyloid$.

Ion-Sensitive Field Effect Transistor-Based Multienzyme Sensor for Alternative Detection of Mercury ions, Cyanide, and Pesticide

  • Vyacheslav, Volotovskky;Kim, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.373-377
    • /
    • 2003
  • Various groups of industrial and agricultural pollutants (heavy metal ions, cyanides, and pesticides) can be detected by enzymes. Since heavy metal ions inhibit urease, cyanides inhibit peroxidase, organophosphorus and carbamate pesticides inhibit butyrylcholinesterase, these enzymes were co-immobilized into a bovine serum albumin gel on the surface of an ion-sensitive field effect transistor to create a bioprobe that is sensitive to the compounds mentioned above. The sensitivity of the present sensor towards KCN corresponded to $1\;\mu\textrm{M}$ with 1 min of incubation time. The detection limits for Hg(II) ions and the pesticide carbofuran were 0.1 and $0.5\;\mu\textrm{M}$, respectively, when a 10 min sensor incubation time in contaminated samples was chosen. The total time for determining the concentrations of all species mentioned did not exceed 20 min.