DOI QR코드

DOI QR Code

Isolation of 6,6'-Bieckol from Grateloupia elliptica and its Antioxidative and Anti-Cholinesterase Activity

  • Lee, Bong Ho (Department of Chemical and Biological Engineering, College of Engineering Hanbat National University) ;
  • Choi, Byoung Wook (Department of Chemical and Biological Engineering, College of Engineering Hanbat National University) ;
  • Lee, Soo Young (Department of Chemical and Biological Engineering, College of Engineering Hanbat National University)
  • Received : 2017.01.06
  • Accepted : 2017.03.15
  • Published : 2017.03.30

Abstract

During the search for anticholinesterase compounds from marine organisms, we were able to isolate 6,6'-bieckol from a red alga, Grateloupia elliptica. This compound showed moderate acetylcholinesterase (AChE) inhibitory activity in a micromole range ($IC_{50}$ $44.5{\mu}M$). However, for butyrylcholinesterase (BuChE), a new target for the treatment of Alzheimer's disease (AD), it showed particularly potent inhibitory activity ($IC_{50}$ $27.4{\mu}M$), which is more potent compared to AChE. It also inhibits BACE-1, a new target for reducing the generation of ${\beta}-amyloid$.

Keywords

References

  1. Artan M, Li Y, Karadeniz F, Lee SH, Kim MM, Kim SK (2008) Anti-HIV-1 activity of phloroglucinol derivative, 6,6'-bieckol, from Ecklonia cava. Bioorgan Med Chem 16(17):7921-7926 https://doi.org/10.1016/j.bmc.2008.07.078
  2. Blois MS (1955) A note on free radical formation in biologically occurring quinones. Biochim Biophys Acta 18:165 https://doi.org/10.1016/0006-3002(55)90038-X
  3. Brossi A (1990) Bioactive alkaloids. 4. results of recent investigations with colchicine and physostigmine. J Med Chem 33:2311-2319 https://doi.org/10.1021/jm00171a001
  4. Choi BW, Lee HS, Shin HC, Lee BH (2015) Multifunctional activity of polyphenolic compounds associated with a potential for alzheimer's disease therapy from Ecklonia cava. Phytother Res 29:549-553 https://doi.org/10.1002/ptr.5282
  5. Courtney C, Farrell D, Gray R, Hills R, Lynch L, Sellwood E, Edwards S, Hardyman W, Raftery J, Crome P, Lendon C, Shaw H, Bentham P (2004) AD2000 collaborative group. Long-term donepezil treatment in 565 patients with Alzheimer's disease (AD2000): randomised double-blind trial. Lancet 363(9427):2105-2115 https://doi.org/10.1016/S0140-6736(04)16499-4
  6. Cummings JL (2000) Cholinesterase inhibitors: a new class of psychotropic compounds. Am J Psychiatry 157:4-15 https://doi.org/10.1176/ajp.157.1.4
  7. Drachman DA, Leavitt J (1974) Human memory and the cholinergic system. A relationship to ageing? Arch Neurol 30:113-121 https://doi.org/10.1001/archneur.1974.00490320001001
  8. Ellmans GL, Courtney KD, Andress VJ, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88-95 https://doi.org/10.1016/0006-2952(61)90145-9
  9. Giacobini E (2000) Cholinesterases and cholinesterase inhibitors. Martin Dunitz Ltd, London, 280 p
  10. Greig NH, Pei X-F, Soncrant TT, Ingram DK, Brossi A (1995) Phenserine and ring C hetero-analogs: drug candidates for the treatment of Alzheimer's disease. Med Res Rev 15(1):3-31 https://doi.org/10.1002/med.2610150103
  11. Greig NH, Utsuki T, Yu Q, Zhu X, Holloway HW, Perry T, Lee BH, Ingram DK, Lahiri DK (2001) A new therapeutic target in Alzheimer's disease treatment: attention to butyrylcholinesterase. Curr Med Res Opin 17(2):1-6 https://doi.org/10.1185/03007990152005397
  12. Greig NH, Sambamurti K, Yu QS, Perry TA, Holloway HW, Haberman F, Brossi A, Ingram DK, Lahiri DK (2003) Butyrylcholinesterase: its selective inhibition and relevance to Alzheimer's disease. In: Giacobini E (ed) Its Function and Inhibition. Martin Dunitz Ltd, London, pp 69-90
  13. Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu QS, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K, Sambamurti K, Brossi A, Lahiri DK (2005a) Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer ${\beta}$-amyloid peptide in rodent. P Natl Acad Sci 102:17213-17218 https://doi.org/10.1073/pnas.0508575102
  14. Greig NH, Sambamurti K, Yu QS, Brossi A, Bruinsma G, Lahiri DK (2005b) An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Curr Alzherimer Res 2:281-291 https://doi.org/10.2174/1567205054367829
  15. Hirase S, Araki C, Watanabe (1967) Component sugars of the polysaccharide of the red seaweed Grateloupia elliptica. B Chem Soc Jpn 40(6):1445-1448 https://doi.org/10.1246/bcsj.40.1445
  16. Kim KY, Nam KA, Kurihara H, Kim SM (2008) Potent alpha-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69:2820-2825 https://doi.org/10.1016/j.phytochem.2008.09.007
  17. Lahiri DK, Rogers JT, Sambamurti K, Greig NH (2004) Rationale for the development of cholinesterase inhibitors as anti-Alzheimer agents. Curr Pharm Design 10:3111-3119 https://doi.org/10.2174/1381612043383331
  18. Lee MS, Shin T, Utsuki T, Choi JS, Byun DS, Kim HR (2012) Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and hepatoprotective properties in Tacrine-Treated HepG2 cells. J Agric Food Chem 60(21):5340-5349 https://doi.org/10.1021/jf300157w
  19. Liu JY (2008) Checklist of biota of Chinese seas. China Science Press, Beijing, 1267 p
  20. Liu JS, Zhu YL, Yu CM, Zhou YZ, Han YY, Wu FW, Qi BF (1986) The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can J Chemistry 64(4):837-839 https://doi.org/10.1139/v86-137
  21. Lopez OL, Becker JT, Saxton J, Sweet RA, Klunk W, DeKosky ST (2005) Alteration of a clinically meaningful outcome in the natural history of Alzheimer's disease by cholinesterase inhibition. J Am Geriatr Soc 53:83-87 https://doi.org/10.1111/j.1532-5415.2005.53015.x
  22. Sambamurti K, Greig NH, Lahiri DK (2002) Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer's disease. Neuromol Med 1:1-31 https://doi.org/10.1385/NMM:1:1:1
  23. Sambamurti K, Suram A, Venugopal C, Prakasam A, Zhou Y, Lahiri DK, Greig NH (2006) A partial failure of membrane protein turnover may cause Alzheimer's disease: a new hypothesis. Curr Alzherimer Res 3:81-90 https://doi.org/10.2174/156720506775697142
  24. Selkoe DJ (2005) Defining molecular targets to prevent Alzheimer disease. Arch Neurol 62(2):192-195 https://doi.org/10.1001/archneur.62.2.192
  25. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735-741 https://doi.org/10.1126/science.286.5440.735
  26. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735-741 https://doi.org/10.1126/science.286.5440.735
  27. Walker LC, Rosen RF (2006) Alzheimer therapeutics-what after the cholinesterase inhibitors? Age and Ageing 35(4):332-335 https://doi.org/10.1093/ageing/afl009
  28. Yu QS, Holloway HW, Utsuki T, Brossi A, Greig NH (1999) Synthesis of novel phenserine-based selective inhibitors of butyrylcholinesterase for Alzheimer's disease. J Med Chem 42(10):1855-1861 https://doi.org/10.1021/jm980459s