• Title/Summary/Keyword: burned and unburned area

Search Result 41, Processing Time 0.021 seconds

The Changes of Soil Microarthropoda at the Burned Areas by Forest Type (임상별(林相別) 산화지역(山火地域)의 토양미소절지동물(土壤微小節肢動物) 변화(變化))

  • Oh, Ki-Cheol;Kim, Jong-Kab
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.287-296
    • /
    • 2000
  • This study was carried out to examine and compare the changes of inhabitation of soil microarthropoda after forest fire between different types of forest; i.e. the coniferous forest (Mt. Chocdae) and the broad-leaved forest (Samsinbong in Mt. Chiri). The individuals of soil microarthropoda found at the burned and unburned areas of Samsinbong and Mt. Chocdae were 12 orders in 5 classes, and individuals of Insecta and Arachnida 98% of them. In respect of classification groups, Collembola order was high at the burned and unburned areas of coniferous forest, while Acari order was high at the broad-leaved area. When classified by soil depth, the total number of soil microarthropoda individuals inhabiting at Samsinbong, the broad-leaved forest, was 25,342 and 37,350 at 1~5cm depth of burned and unburned areas respectively, while at 5~10cm depth the number turned out 9,722 and 15,906. Soil microarthropoda individuals of unburned area was 1.6 times higher than for the burned area. At the coniferous forest, the number marked 31,665 and 51,431, respectively for 1~5cm depth of burned and unburned area, and 10,189 and 13,202 for 5~10cm depth. Here also, the number for the unburned area was examined to be 1.4 times higher than for the burned area.

  • PDF

A simple estimate of the carbon budget for burned and unburned Pinus densiflora forests at Samcheok-si, South Korea

  • Lim, Seok-Hwa;Joo, Seung Jin;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.281-291
    • /
    • 2015
  • To clarify the effects of forest fire on the carbon budget of a forest ecosystem, this study compared the seasonal variation of soil respiration, net primary production and net ecosystem production (NEP) over the year in unburned and burned Pinus densiflora forest areas. The annual net carbon storage (i.e., NPP) was $5.75t\;C\;ha^{-1}$ in the unburned site and $2.14t\;C\;ha^{-1}$ in the burned site in 2012. The temperature sensitivity of soil respiration (i.e., $Q_{10}$ value) was higher in the unburned site than in the burned site. The annual soil respiration rate was estimated by the exponential regression equation with the soil temperatures continuously measured at the soil depth of 10 cm. The estimated annual soil respiration and heterotrophic respiration (HR) rates were 8.66 and $4.50t\;C\;ha^{-1}yr^{-1}$ in the unburned site and 4.08 and $2.12t\;C\;ha^{-1}yr^{-1}$ in the burned site, respectively. The estimated annual NEP in the unburned and burned forest areas was found to be 1.25 and $0.02t\;C\;ha^{-1}yr^{-1}$, respectively. Our results indicate that the differences of carbon budget and cycling between both study sites are considerably correlated with the losses of living plant biomass, insufficient nutrients and low organic materials in the forest soil due to severe damages caused by the forest fire. The burned Pinus densiflora forest area requires at least 50 years to attain the natural conditions of the forest ecosystem prior to the forest fire.

섭제골 지역의 산화지 및 비산화지의 군락구조 비교

  • Sim, Hak-Bo;Kim, Woen
    • The Korean Journal of Ecology
    • /
    • v.16 no.4
    • /
    • pp.429-438
    • /
    • 1993
  • This is a report on the early vegetation and the secondary succession in the burned area of SeobJe-Go1 of $IIwasan-MY\v{o}n,\;Y\v{o}ngch\v{o}n-Gun,\;Ky\v{u}ngsangbuk-do$ Province. The forest fire occurred on April 8, 1982 and the pine forest and its floor vegetation were burned down. The investigation was done six times from August 20, 1982 to August 13, 1983. The results are summarized as follows: the floristic composition of burned areas $B_1,\;B_2$, and unburned areas $U_1,\;U_2$ were composed of 25, 23, 32, and 27 kinds of vascular plants. respectively. The biological spectra showed the $H-D_1-R_5-e$ type in both the burned and unburned areas. The species of Arundinella hirta, Miscanthus simnsis var. purpurascens and Cares hurnilis var. nana were dominant species in the burned area, while Pinus densiflorrr, Corex humilis var. nana and Rhododendron mucronulatum var. ciliafum were dominant species in the unburned area. Degree of succession of the unburned area was comparatively higher than that of the burned area. Species diversity index and evenness index of the burned area were similar to those of the unburned area. Indices of similarity in sampling sites showed that $B_1\;and\;B_2$ stands were the most similar. pH, total nitrogen, available phosphorus and exchangeable potassium of soil increased but organic matter and total organic carbon decreased after fire.

  • PDF

The Secondary Vegetation of the Burned Area of a Mountain in Dangji-Dong (당지동의 산화적지의 이차식생)

  • Kim, Woen
    • The Korean Journal of Ecology
    • /
    • v.6 no.3
    • /
    • pp.187-197
    • /
    • 1983
  • This report is a series of the investigation of the secondary vegetation and succession at the forest fire area in Dangji-Dong of Kyungsang-pookdo province. The forest fires occurred on April 8, 1982. This investigation was carried out from June 18, 1982 to May 29, 1983 once in each season. Before to fires, the Pinus densiflora was dominant and the woody plants of understory were mainly composed of the Quercus serrata, Q. dentata, Lespedeza maritima and L. macimowiczii. Compared with the florstic composition between the unburned and burned areas after the fires, the floristic composition of unburned area comprises: 79 families, 194 genera, 223 species, 26 varieties and 6 formae (255 kinds of vascular plants). The index of similary shows 0.77 (S$\Phi$renson:1948) in this area. The analyses of the life-form compositions in the unburned and burned area show 32.9% and 29.3% in dormancy form (H), 42.4% and 37.7% in disseminule form($D_1$), 80.8% and 82.2% in radicoid form ($R_5$), and 57.7% and 61.8% in erect form(e) respectively. The biological type shows H-$D_1$-R5-e, which is common in both areas, and erect form is generally prevailing in these communities.

  • PDF

The Changes of Forest Vegetation and Soil Environmental after Forest Fire (산불 후 산림식생 및 토양환경의 변화)

  • Oh, Ki-Cheol;Kim, Jong-Kab;Jung, Won-Ok;Min, Jae-Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.3
    • /
    • pp.19-29
    • /
    • 2001
  • This study was carried out to examine the recovery of forest ecosystem at the burned areas of coniferous (Mt. Chosdae) and broad leaved forest (Samsinbong in Mt. Chiri) by investigating the changes of forest vegetation. The results obtained are summarized as follows; 1. In the Samsinbong, the total number of species appeared at the burned area were 5 species at tree layer, 11 species at sub-tree layer and 24 species at herb layer, and at the unburned area were 5 species at tree layer, 14 species at sub-tree layer, 18 species at shrub layer and 23 species at herb layer, respectively. In the Mt. Chosdae, the total number of species appeared at the burned area only showed to 83 species at herb layer, and at the unburned area were 7 species at tree layer, 13 species at sub-tree layer, 21 species at shrub layer and 46 species at herb layer, respectively. 2. In the soil chemical properties of the burned area of Samsinbong, pH was 5.8, and contents of Organic matter, Total nitrogen, Available $P_2O_5$, Exchangeable $K^+$, Exchange $Ca^{{+}{+}}$ and Exchange $Mg^{{+}{+}}$ were 7.42%, 0.73%, 28.5mg/kg, 1.3me/100g, 13.3me/100g and 2.2me/100g, respectively. But they showed a tendency to decrease by passing the time. In the soil chemical properties of the burned area of Mt. Chosdae, pH was 5.3, and contents of Organic matter, Total nitrogen, Available $P_2O_5$, Exchangeable $K^+$, Exchange $Ca^{{+}{+}}$ and Exchange $Mg^{{+}{+}}$ were 6.42%, 0.25%, 24.4mg/kg, 0.7me/100g, 3.7me/100g and 2.1me/100g, respectively, and they also showed a tendency to decrease by passing the time. 3. An the burned and unburned areas of Samsinbong, the total evolved amounts of soil respiration were $4,049.1mg/m^2/h$ and $9,950.0mg/m^2/h$, respectively. An the burned and unburned areas of Mt. Chosdae, the total evolved amounts of soil respiration were $4,392.4mg/m^2/h$ and $8,286.5mg/m^2/h$, respectively.

  • PDF

Detection of Wildfire-Damaged Areas Using Kompsat-3 Image: A Case of the 2019 Unbong Mountain Fire in Busan, South Korea

  • Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • Forest fire is a critical disaster that causes massive destruction of forest ecosystem and economic loss. Hence, accurate estimation of the burned area is important for evaluation of the degree of damage and for preparing baseline data for recovery. Since most of the area size damaged by wildfires in Korea is less than 1 ha, it is necessary to use satellite or drone images with a resolution of less than 10m for detecting the damage area. This paper aims to detect wildfire-damaged area from a Kompsat-3 image using the indices such as NDVI (normalized difference vegetation index) and FBI (fire burn index) and to examine the classification characteristics according to the methods such as Otsu thresholding and ISODATA(iterative self-organizing data analysis technique). To mitigate the salt-and-pepper phenomenon of the pixel-based classification, a gaussian filter was applied to the images of NDVI and FBI. Otsu thresholding and ISODATA could distinguish the burned forest from normal forest appropriately, and the salt-and-pepper phenomenon at the boundaries of burned forest was reduced by the gaussian filter. The result from ISODATA with gaussian filter using NDVI was closest to the official record of damage area (56.9 ha) published by the Korea Forest Service. Unlike Otsu thresholding for binary classification,since the ISODATA categorizes the images into multiple classes such as(1)severely burned area, (2) moderately burned area, (3) mixture of burned and unburned areas, and (4) unburned area, the characteristics of the boundaries consisting of burned and normal forests can be better expressed. It is expected that our approach can be utilized for the high-resolution images obtained from other satellites and drones.

Effects of Fire on Species Composition of Understory Vegetation and Seed Germination of Melica onoei in Black Pine Forest (산불이 곰솔림 산화지의 하층식생 구성과 쌀새(Melica onoei Fr.)의 종자발아에 미치는 영향)

  • Mun, Hyeong-Tae
    • The Korean Journal of Ecology
    • /
    • v.24 no.3
    • /
    • pp.131-136
    • /
    • 2001
  • Comparisons of understory vegetation between the burned and the unburned area, and effects of fire on seed germination of Melica onoei, which increased importance value in burned area, were investigated in the black pine forest. The number of plant species in burned and unburned area was 38 and 20, respectively. Melica onoei, indigofera kirilowii, Lespedeza bicolor Miscanthus sinensis were the most abundant species in burned area. A number of seedlings and sprouts of these species were found in burned area. Standing biomass of understory vegetation in burned and unburned area was 88.7g/㎡ and 299.8g/㎡, respectively, in the immediate postfire year. However, standing biomass in burned area increased to 537.2g/㎡ and relative standing biomass of Melica onoei was the highest with a value of 25.7% in the second year Seed germination of Melica onoei in control(C), dark (D), leaf (L), leaf extract (E) treatment was 92.5%, 86.0%, 45.5% and 39.0%, respectively. However, seed germination in L+E and D+L+E treatment was 10.5% and 4.0%, respectively. It is assumed that higher importance value of M. onoei in the postfire vegetation in this study area might be due to the removal of allelopathic inhibitors and the improvement of light condition after fire.

  • PDF

The Secondary Vegeation and Sucession of the Forest Fire Area of Nae-Hak Dong, Mt. Palgong (팔공산 내학동일대의 산화적지의 이차식생과 천이)

  • Cho, Young Ho
    • The Korean Journal of Ecology
    • /
    • v.6 no.1
    • /
    • pp.22-32
    • /
    • 1983
  • The paper is investigation of the secondary vegeation and succession at the forest fire area in Mt. Palgong. The survey was carried out from April, 1981 to Stempter, 1982. The floristic compositions were as follows: 50 families, 116 genera, 127 species, 15 varieties and 3 formae(145 kinds). Among them, the floristic composition of the pine floor vegetation of the unburned area was 43 families, 80 genera, 88 species, 10 varieties and 1 forma(99 kinds), and that of the secondary vegetatiion after forest fire was 46 families, 106 genera, 120 species, 14 varieties and 3 formae(137 kinds). Index of similarity between the burned and unburned area was 0.77. The biological type succeeded in $H-D_1-R_5$type, and the erect form(s) was prevailed. Carex humilis var. nana, Miscanthus sinensis var. purpurascens, and lespedeza cyrtobotrya were dominant species in the $ B_1; and; B_2$ area of the seventh year after forest fire. In the degree of succession, species diversity, and evenness index, DS, H, and e of the $B_1$ area were higher than those of the $B_2$ area. In the soil properties, it assumed that pH, total nitrogen, and available phosphores of the burned area were nearly recovered to those of the unburned area.

  • PDF

Characteristics of soil respiration in Pinus densiflora stand undergoing secondary succession by fire-induced forest disturbance

  • Kim, Jeong-Seob;Lim, Seok-Hwa;Joo, Seung Jin;Shim, Jae-Kuk;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.37 no.3
    • /
    • pp.113-122
    • /
    • 2014
  • The purpose of this study is to compare soil $CO_2$ efflux between burned and unburned sites dominated by Pinus densiflora forest in the Samcheok area where a big forest fire broke out along the east coast in 2000 and to measure soil $CO_2$ efflux and environmental factors between March 2011 and February 2012. Soil $CO_2$ efflux was measured with LI-6400 once a month; the soil temperature at 10 cm depth, air temperature, and soil moisture contents were measured in continuum. Soil $CO_2$ efflux showed the maximum value in August 2011 as 417.8 mg $CO_2m^{-2}h^{-1}$ (at burned site) and 1175.1 mg $CO_2m^{-2}h^{-1}$ (at unburned site), while it showed the minimum value as 41.4 mg $CO_2m^{-2}h^{-1}$ (at burned site) in December 2011 and 42.7 mg $CO_2m^{-2}h^{-1}$ (at unburned site) in February 2012. The result showed the high correlation between soil $CO_2$ efflux and the seasonal changes in temperature. More specifically, soil temperature showed higher correlation with soil $CO_2$ efflux in the burned site ($R^2$ = 0.932, P < 0.001) and the unburned site ($R^2$ = 0.942, P < 0.001) than the air temperature in the burned site ($R^2$ = 0.668, P < 0.01) and the unburned site ($R^2$ = 0.729, P < 0.001). $Q_{10}$ values showed higher sensitivity in the unburned site (4.572) than in the burned site (2.408). The total soil $CO_2$ efflux was obtained with the exponential function between soil $CO_2$ efflux and soil temperature during the research period, and it showed 2.5 times higher in the unburned site (35.59 t $CO_2ha^{-2}yr^{-1}$, 1 t = $10^3$ kg) than in the burned site (14.69 t $CO_2ha^{-2}yr^{-1}$).

Effects of Fire on Vegetation and Soil Nutrients in Mt. Chiak (치악산의 식생과 토양에 미친 산불의 영향)

  • 박봉규;김종희
    • Journal of Plant Biology
    • /
    • v.24 no.1
    • /
    • pp.31-45
    • /
    • 1981
  • The purpose of this study aimed to study effects of fire on vegetation and soil properties after the first growing season in Mt. Chiak. 1. With the basis of importance value of species in each stand, status of species was assessed for three categories; Increaser species, Decreaser species, and Neutral species. 2. Biomass was 2.2 times higher on burned area than unburned. This indicates that biomass was remarkably increased after fire. 3. To evaluate similarity, coefficients of similarity among communities were obtained, and correlation coefficients were also estimated. These indices showed that burned and unburned community were markedly different.. $B_1$-stand and $B_1$-stand appeared most similar to each other among stands. 4. Species diversity was greater in burned than unburned stands. 5. Soil pH value and organic matter content in burned area were significantly higher than those in unburned area. However, soil water content was lower in burned area. There was no effect of burning on soil pH value and water content at 15~20 cm depth of soil. 6. All chemical compositions except sodium were much higher in soil surface. The decreases in sodium levels at surface were probably resulted from the rapid leaching due to the increased solubility and decreased capacity for adsorption of sodium in comparison with potassium or calcium. Among chemical compositions of soil amount of nitrogen showed least difference between the burneb and unburned surfaces soil.

  • PDF