• 제목/요약/키워드: bulk structure

Search Result 854, Processing Time 0.027 seconds

Flexural Strength of Polysiloxane-Derived Strontium-Doped SiOC Ceramics

  • Eom, Jung-Hye;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.61-65
    • /
    • 2015
  • The effect of Sr addition on the flexural strength of bulk SiOC ceramics was investigated in polymer-derived SiOC ceramics prepared by conventional hot pressing. Crack-free, dense SiOC discs with a 30 mm diameter were successfully fabricated from commercially available polysiloxane with 1 mol% strontium isopropoxide derived Sr as an additive. Agglomerates formed after the pyrolysis of polysiloxane led to the formation of domain-like structures. The flexural strength of bulk SiOC was strongly dependent on the domain size formed and Sr addition. Both the minimization of the agglomerate size in the starting powders by milling after pyrolysis and the addition of Sr, which reinforces the SiOC structure, are efficient ways to improve the flexural strength of bulk SiOC ceramics. The typical flexural strength of bulk Sr-doped SiOC ceramics fabricated from submicron-sized SiOC powders was ~209 MPa.

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

A study on the thermal oxidation process of bulk AlN single crystal grown by PVT (PVT 법으로 성장 된 bulk AlN 단결정의 열 산화 공정에 관한 연구)

  • Kang, Hyo Sang;Kang, Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.168-173
    • /
    • 2020
  • To analyze and describe the behavior and mechanisms occurring in the thermal oxidation process of AlN, bulk AlN single crystals were thermally treated with different temperatures. As a result, it was confirmed that full-scale oxidation of bulk AlN and growth of Al-oxide occurred from the temperature of 800℃, which confirmed that the weight% of O elements tended to increase while the N elements decreased with increasing the temperature. In the case of thermal treatment at 900℃, the grown Al-oxides were merged with neighboring Al-oxides and began to form α-Al2O3 poly-crystals. During thermal treatment at the temperature of 1000℃, hexagonal pyramidal shaped poly-crystalline α-Al2O3 was clearly observed. Through the X-ray diffraction pattern analysis, the changes of surface crystal structure according to the temperature of bulk AlN were investigated in detail.

Structure of Opposite Wood in Angiosperms(II) - Structure of Opposite Woods in the Horizontal-growing Stems of Immature Woods - (활엽수(闊葉樹) Opposite재(材)의 구조(構造)(II) - 수평(水平) 생장(生長)시킨 유영목수간(幼 令木樹幹)의 Opposite재(材) 구조(構造) -)

  • Park, Sang-Jin;Park, Byung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.20-27
    • /
    • 1989
  • This experiment was made to find the peripheral variations of annualring widths, the cell dimensions, microfibril angles and bulk densities within each annual-ring of horizontal-growing young tree of beech(Betul a platyphylla var. japonica) and Oak (Quercus variabilis) from the tension to the opposite side. Also a comparision between the features of the obnormal annual ring for horizontal-growing year and normal annual ring for the straight-growing years was made. The dimension of propotion of the element, the microfibril angles and the bulk density decreased or increased continuously toward opposite side which showed minimum or maximum value. The dimension of elements the microfibril angles and the bulk density decreased or increased continuously towards opposite side which showed minimum or maximum value. The dimension of elements. the microfibril angles and the bulk density in the normal annual rings were similar to those in the lateral woods. whereas were significantly more different in the tension wood than in the opposite wood. The features of typical opposite wood in the hardwoods were influenced by the locations within the inclined stems than effects of the decrease in the annual ring width. The oppostie woods in hardwoods did not conform to the tension wood and lateral wood. The abnormal annual ring included the opposite wood, lateral wood similar to normal wood and tension wood having specialized structure even in the same annual ring.

  • PDF

Nano Structure and Mechanical Properties of Rapidly Solidified Al81-(x+y)Si19NixCey Alloy (급속응고된 Al81-(x+y)Si19NixCey 합금의 나노조직과 기계적 특성)

  • 이태행;홍순직
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.406-414
    • /
    • 2003
  • In order to produce good wear resistance powder metallurgy Al-Si alloys with high strength, addition of glass forming elements of Ni and Ce in $Al_{81}$Si$_{19}$ alloy was examined using SEM, TEM, tensile strength and wear testing. The solubility of Si in aluminum increased with increasing Ni and Ce contents for rapidly solidified powders. These bulk alloys consist of a mixed structure in which fine Si particles with a particle size below 500 nm and very fine A1$_3$Ni, A1$_3$Ce compounds with a particle size below 200 nm are homogeneously dispersed in aluminum matrix with a grain size below 600 nm. The tensile strength at room temperature for $Al_{81}$Si$_{19}$, $Al_{78}$Si$_{19}$Ni$_2$Ce$_{0.5}$, and $Al_{76}$Si$_{19}$Ni$_4$Ce$_1$ bulk alloys extruded at 674 K and ratio of 10 : 1 is 281,521, and 668 ㎫ respectively. Especially, $Al_{73}$Si$_{19}$Ni$_{7}$Ce$_1$ bulk alloy had a high tensile strength of 730 ㎫. These bulk alloys are good wear-resistance bel ter than commercial I/M 390-T6. Specially, attactability for counterpart is very little, about 15 times less than that of the I/M 390-T6. The structural refinement by adding glass forming elements such as Ni and Ce to hyper eutectic $Al_{81}$Si$_{19}$ alloy is concluded to be effective as a structural modification method.d.tion method.

Critical currents across grain boundaries in YBCO : The role of grain boundary structure

  • Miller Dean J.;Gray Kenneth E.;Field Michael B.;Kim, Dong-Ho
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.14-19
    • /
    • 1999
  • Measurements across single grain boundaries in YBCO thin films and bulk bicrystals have been used to demonstrate the influence of grain boundary structure on the critical current carried across the grain boundary. In particular, we show that one role of grain boundary structure is to change the degree of pinning along the boundary, thereby influencing the critical current. This effect can be used to explain the large difference in critical current density across grain boundaries in thin films compared to that for bulk bicrystal. These differences illustrate the distinction between the intrinsic mechanism of coupling across the grain boundary that determines the maximum possible critical current across a boundary and the measured critical current which is limited by dissipation due to the motion of vortices.

  • PDF

Characteristics of Particles Structure of Delactosed Nonfat Dry Milk (탈유당 탈지분유의 입자구조 특성에 관한 연구)

  • 송재철;박현정;신완철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.341-345
    • /
    • 1995
  • In comparison with calcium caseinate, delactosed nonfat dry milk has a greater particle size but also a higher bulk density, reflecting the differences in their composition and physical structure. Particles of delactosed nonfat dry milk were bigger than those of nonfat dry milk as a result of swelling and aggregation. The particle size was shown not to be correlated with the bulk density. The differences in particle characteristics between delactosed nonfat dry milk and nonfat dry milk were caused by the removal of lactose producing highly porous particles. The particles of delactosed nonfat dry milk were observed to be much more irregular, rough, hollow, fragile, and swelling as a result of solvent treatment.

  • PDF

Analysis of Community Structure of Metabolically Active Bacteria in a Rice Field Subjected to Long-Term Fertilization Practices

  • Ahn, Jae-Hyung;Choi, Min-Young;Lee, Hye-Won;Kim, Byung-Yong;Song, Jaekyeong;Kim, Myung-Sook;Weon, Hang-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.585-592
    • /
    • 2013
  • To estimate the effect of long-term fertilization on metabolically active bacterial communities in a rice field, RNA was extracted from endosphere (rice root), rhizosphere, and bulk soil that had been subjected to different fertilization regimes for 59 years, and the 16S rRNAs were analyzed using the pyrosequencing method. The richness and diversity of metabolically active bacteria were higher in bulk soil than in the endosphere and rhizosphere, and showed no significant difference between non-fertilized and fertilized plots. Weighted UniFrac analysis showed that each compartment had characteristic bacterial communities and that the effect of long-term fertilization on the structure of bacterial community was more pronounced in bulk soil than in the endosphere and rhizosphere. The 16S rRNAs affiliated with Alphaproteobacteria and Firmicutes were more abundant in the endosphere than in bulk soil while those affiliated with Chloroflexi and Acidobacteria were more abundant in bulk soil than in the endosphere. Several dominant operational taxonomic units (clustered at a 97% similarity cut-off) showed different frequencies between non-fertilized and fertilized plots, suggesting that the fertilization affected their activities in the rice field.

Optimal dimension design of a hatch cover for lightening a bulk carrier

  • Um, Tae-Sub;Roh, Myung-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.270-287
    • /
    • 2015
  • According to the increase of the operating cost and material cost of a ship due to the change of international oil price, a demand for the lightening of the ship weight is being made from various parties such as shipping companies, ship owners, and shipyards. To satisfy such demand, many studies for a light ship are being made. As one of them, an optimal design method of an existing hull structure, that is, a method for lightening the ship weight based on the optimization technique was proposed in this study. For this, we selected a hatch cover of a bulk carrier as an optimization target and formulated an optimization problem in order to determine optimal principal dimensions of the hatch cover for lightening the bulk carrier. Some dimensions representing the shape of the hatch cover were selected as design variables and some design considerations related to the maximum stress, maximum deflection, and geometry of the hatch cover were selected as constraints. In addition, the minimization of the weight of the hatch cover was selected as an objective function. To solve this optimization problem, we developed an optimization program based on the Sequential Quadratic Programming (SQP) using C++ programming language. To evaluate the applicability of the developed program, it was applied to a problem for finding optimal principal dimensions of the hatch cover of a deadweight 180,000 ton bulk carrier. The result shows that the developed program can decrease the hatch cover's weight by about 8.5%. Thus, this study will be able to contribute to make energy saving and environment-friendly ship in shipyard.