• Title/Summary/Keyword: bulk magnet

Search Result 57, Processing Time 0.029 seconds

Development of 3 T-class Large Area YBCO Superconductor Bulk Magnet (3 T급 대면적 YBCO 초전도 벌크자석 개발)

  • Han, S.C.;Jeong, S.Y.;Park, B.J.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.71-75
    • /
    • 2012
  • For the practical application of a YBCO superconductor bulk magnet, the superconductor bulk magnet with strong and stable magnetic field on a large area surface should be fabricated. To satisfy these requirements, we have designed a conduction-cooled bulk magnet system using six single grain YBCO bulk superconductors. Six rectangular-shaped YBCO bulk superconductors with a dimension of $38{\times}38{\times}15mm^3$ were field-cooled at 20 K using a superconductor magnet with maximum operating magnetic field of 4 T. The magnetic flux of 3.0 T and 2.8 T were achieved on the surface of bulk superconductors and over the vacuum chamber surface of the refrigerator, respectively.

A study on design process of HTS bulk magnet synchronous motors

  • Jaheum Koo;JuKyung Cha;Jonghoon Yoon;Seungyong Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.1-4
    • /
    • 2024
  • This study explores the use of a bulk type high-temperature superconductors (HTS) as trapped field magnets in synchronous motors. A HTS bulk is examined for its ability to generate powerful magnetic fields over a permanent magnet and to eliminate the need for a direct power supply connection compared to a tape form of HTS. A 150 kW interior-mounted bulk-type superconducting synchronous motor is designed and analyzed. The A-H formulation is used to numerical analysis. The results show superior electrical performance and weight reduction when comparing the designed model with the conventional permanent magnet synchronous motor of the same topology. This study presents HTS bulk synchronous motor's overall design process and highlights its potential in achieving relatively high power density than conventional permanent magnet synchronous motor.

The fabrication of bulk magnet stacked with HTS tapes for the magnetic levitation

  • Park, Insung;Kim, Gwantae;Kim, Kyeongdeok;Sim, Kideok;Ha, Hongsoo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.47-51
    • /
    • 2022
  • With the innovative development of bio, pharmaceutical, and semiconductor technologies, it is essential to demand a next-generation transfer system that minimizes dust and vibrations generated during the manufacturing process. In order to develop dust-free and non-contact transfer systems, the high temperature superconductor (HTS) bulks have been applied as a magnet for levitation. However, sintered HTS bulk magnets are limited in their applications due to their relatively low critical current density (Jc) of several kA/cm2 and low mechanical properties as a ceramic material. In addition, during cooling to cryogenic temperatures repeatedly, cracks and damage may occur by thermal shock. On the other hand, the bulk magnets made by stacked HTS tapes have various advantages, such as relatively high mechanical properties by alternate stacking of the metal and ceramic layer, high magnetic levitation performance by using coated conductors with high Jc of several MA/cm2, consistent superconducting properties, miniaturization, light-weight, etc. In this study, we tried to fabricate HTS tapes stacked bulk magnets with 60 mm × 60 mm area and various numbers of HTS tape stacked layers for magnetic levitation. In order to examine the levitation forces of bulk magnets stacked with HTS tapes from 1 to 16 layers, specialized force measurement apparatus was made and adapted to measure the levitation force. By increasing the number of HTS tapes stacked layers, the levitation force of bulk magnet become larger. 16 HTS tapes stacked bulk magnets show promising levitation force of about 23.5 N, 6.538 kPa at 10 mm of levitated distance from NdFeB permanent magnet.

Development of Large-sized YBCO High Temperature Superconductor Bulk Magnets and Actuator (대면적 YBCO 고온 초전도 벌크 자석 및 조작기 개발)

  • Han, Sang-Chul;Park, Byung-Jun;Jung, Se-Yong;Han, Young-Hee;Lee, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.450-455
    • /
    • 2015
  • For the practical application of a YBCO superconductor bulk, the superconductor bulk magnet with high magnetic field on a large area surface should be fabricated. To make this, YBCO single crystal bulks with fine $Y_2BaCuO_5$(Y211) particles have been prepared by the top-seed melt growth(TSMG) method with $YBa_2Cu_3O_x$, $Y_2O_3$, and $CeO_2$ mixing precursor. By using $Y_2O_3$ instead of $Y_2BaCuO_5$ as precursor, the manufacturing process became simpler and more economical. The microstructures, trapped field and critical current density of the various conditioned YBCO bulks have been observed, analyzed and measured. The different characteristic values of the several samples have been analyzed from the viewpoint of their microstructures. We have developed a $8{\times}12cm$ size superconductor bulk magnet, up to 3 T class, by using the 4 T class-high field superconducting magnetizer and confirmed the applicability of the transmission level circuit breakers by measuring the strength and speed of the superconductor bulk magnet actuator.

Limitation of a levitation system using a superconducting bulk (초전도 벌크를 이용한 자기부상 시스템의 한계)

  • 한승용;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.61-64
    • /
    • 2001
  • Levitation force of a new magnetic levitation system using a super-conducting bulk magnet(SBM) and a permanent magnet(PM) was numerically calculated. The non-linear J-E relation of a SBM was modeled using a critical state model and iteration method, and demagnetization of a PM was considered using a demagnetization curve of a real PM. The maximum limitation of levitation force was found according to increasing the trapped field in a SBM. Finite element method was used for numerical calculation.

  • PDF

Development of Program for Electro-Magnetic Analysis in Superconducting Bulk (초전도 벌크내의 전자장 해석 프로그램 개발)

  • 한승용;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.85-88
    • /
    • 1999
  • The study of HTS bulk in permanent magnet applications requires the calculation of forces acting on the bulk. Currents distribution in HTS Superconducting bulk is very important to determine this forces. We have made computer program to find this current distribution and this program is applied to some simple disc-shape HTS bulk being magnetised in a uniform field. The techniques for determination of currents are FEM analysis and iteration method.

  • PDF

Development of the Program for levitation Force Analysis in a Superconducting Bulk (초전도 벌크의 부상력 해석 프로그램 개발)

  • 한승용;김우석;차귀수;한송엽
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.20-24
    • /
    • 1999
  • The study of HTS(High Temperature Superconducting) bulk in magnetic levitation system requires the calculation of currents distribution in HTS bulk is very important to determine this forces. We have made computer program to find this current distribution and levitation force. J-E relation in HTS bulk is extremely nonlinear, so iteration method must be used to determine the current distribution. We developed the method to determine the current distribution in the unifrom-field model and, using this method, calculated the levitation force in permanent-magnet-levitation model.

  • PDF

Magnetic Force Properties of Superconducting Bulk (초전도 벌크의 자기적 특성을 위한 간편한 시스템)

  • Sang Heon Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.70-73
    • /
    • 2023
  • To improve superconductor properties, the size of the crystal grains of the superconductor should be adjusted, the amount of electricity flowing through the superconductor should be increased, and the superconductor should be designed to withstand external magnetic fields. It is necessary to control the microstructure so that many flux pinning centers are developed inside the superconductor so that defects are generated physically or chemically, and the micro secondary phase for trapped magnetic flux must be dispersed inside the superconductor. In order to measure the superconducting magnetic force of the superconducting bulk in a simplified manner, the superconducting magnetic force was analyzed using an Nd-Fe-B permanent magnet of 3.80 kG. In particular, by delaying the growth of partially melted Y2BaCuO5 particles, we devised a plan to refine Y2BaCuO5 particles to effectively improve superconducting magnetic force, and analyzed superconducting magnetic force in a single crystal YBa2Cu3O7-y superconducting bulk using a gauss meter. The melted superconducting bulk traps 80% or more of the applied magnetic field, and can be used as a bulk magnet of high magnetic field magnetization applicable to electric power equipment.

The Fabrication and Characteristic Experiment of a Heater-Trigger type High-Tc Superconducting Power Supply (히터트리거를 이용한 고온초전도전원장치의 제작 및 특성 실험에 관한 연구)

  • Yoon, Yong-Soo;Kim, Ho-Min;Chu, Yong;Lee, Chang-Yul;Ko, Tae-Kuk;Han, Tae-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.9
    • /
    • pp.484-489
    • /
    • 1999
  • This paper deals with the design and fabrication of a heater-trigger type high-Tc superconducting power supply system, and characteristics have been analyzed through experiments. The high-Tc superconducting power supply consists of two heater trigger and electric magnet, and YBCO superconducting bulk. In this experiment, 0.6T class magnet and dc 2.3A heater current are used, and the current-pumping characteristics have been analyzed with computer aided sequence control system. Hall sensors are installed on the YBCO bulk and in the center of iron core in order to analyze the effect of the flux-pumping on the system with when magnet flux changes its value. In this experiment, maximum pumping-current has been achieved to about 6.6 amps.

  • PDF