• Title/Summary/Keyword: bulging failure

Search Result 41, Processing Time 0.026 seconds

Subvalvular Pulmonic Stenosis with Congestive Heart Failure in a Yorkshire terrier (요크셔테리어종에서의 울혈성 심부전을 동반한 판막하형 폐동맥판 협착증)

  • 박현정;채형규;이승진;이영원;오태호;장광호;박성준
    • Journal of Veterinary Clinics
    • /
    • v.18 no.4
    • /
    • pp.452-454
    • /
    • 2001
  • A two-month-old female Yorkshire terrier was referred to the Veterinary Teaching Hospital, College of Veterinary Medicine, Kyungpook national University. The patient was presented with a history of dyspnea, cough, exercise intolerance and abdominal distension, but she was appetence. In physical examination the puppy was coughed on slight tracheal compression. Rectal temperature, pulse and respiratory rate were normal, and grade 3/6 systolic murmur heard at the left heart base. The murmur was crescendo-decrescendo. Electrocardiography showed sinus arrhythmia, right-ventricular hypertrophy pattern, and right axis deviation. Thoracic radiography revealed cardiomegaly, bulging of the main pulmonary artery, and enlarged left side heart. Abdominal radiography revealed abdkominal distention. Echocardiography showed hypertrophy of right ventricle and turbulence in the pulmonary artery in parasternal oblique view. Subvalvular pulmonic stenosis was diagnosis based upon the clinical signs, physical examination, electrocardiography, radiography and echocardiography. We treated the patient with furosemide, enalapril and $\beta$-blocker. After the clinical signs of cough, abdominal distension and dyspnea were disappeared, she was on just $\beta$-blocker for prevention of occurrence of congestive heart failure. Now she was recovered her health, and she is not on any medication.

  • PDF

Experimental Study on the Characteristics of Rapid Chilled Converter Slag by Watering

  • Lee, Keun-Jae;Yoo, Seung-Yeup;Koo, Ja-Sul;Cho, Bong-Suk;Lee, Hoon-Ha
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.133-137
    • /
    • 2011
  • In this study, a physical and chemical properties analysis was conducted for PCSP to evaluate properties of its materials and, for comparison purpose, was also conducted for CSP. The result of experiment confirmed improvement of iron recovery rate due to introduction of rapid water-cooling equipment and greater density of exterior and interior structure through SEM observation and porosity measurement. Also, SEM, XRD and DSC-TGA analysis showed that content of f-CaO in PCSP was minuscule so it was decided that problems of material stability including f-CaO-caused bulging failure, which has been problematic, can be solved.

Bearing capacity analysis of stone column in soft clay soils (연약점토 지반에 있는 STONE COLUMN의 지지력 산정)

  • 이윤주
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.141-148
    • /
    • 1996
  • Use of stone column for deep ground treatment in soft clay soils is an effective method. The stone column significantly increases load carrying capacity of the soft clay soil. A analysis method for bearing capacity of stone column in soft clay soil is developed. The capacity made by developed method are compared wity observed values from field load test and a reasonable correlation is noted.

  • PDF

Analysis of Bearing Capacity Characteristics on Granular Compaction Pile - focusing on the Model Test Results (조립토 다짐말뚝의 지지력 특성 분석 - 모형토조실험 결과를 중심으로)

  • Kang, Yun;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Granular compaction piles have the load bearing capacity of the soft ground increase and have the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and have the liquefaction caused by earthquake prevent using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. The Granular compaction piles are constructed by grouping it with a raft system. The confining pressure at the center of bulging failure depth is a major variable in relation to estimate for the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and varies the magnitude of the confining pressure. In this study, method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge and loaded area. Also, the ultimate bearing capacity of the granular compaction piles is evaluated on the basis of previous study on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests. And using the result from laboratory model tests, it is studied increase effect of the bearing capacity on the granular compaction piles and variance of coefficient of consolidation for the ground.

  • PDF

Evaluation of Ultimate Bearing Capacity on Granular Compaction Pile Considering Various Stresses in a Ground (지중응력의 변화를 고려한 조립토 다짐말뚝의 극한지지력 평가)

  • Kang, Yun;Yun, Ji-Yeon;Chang, Weon-Ho;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • Granular compaction pile has the load bearing capacity of the soft ground increase and has the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is not widely used in Korea. The granular compaction piles are constructed by grouping them with a raft system. The confining pressure at the center of bulging failure depth is a major variable in estimating the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and the variation of the magnitude of the confining pressure. In this study, a method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge, and loaded area. Also, the ultimate bearing capacity of the granular compaction pile is evaluated on the basis of previous study(Kim et al., 1998) on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests and DEM numerical analysis using the PFC-2D program.

Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads

  • Ma, Hui;Xi, Jiacheng;Zhao, Yaoli;Dong, Jikun
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.103-120
    • /
    • 2021
  • This research examines the eccentric compression performance of composite columns composed of recycled aggregate concrete (RAC)-filled square steel tube and profile steel. A total of 17 specimens on the composite columns with different recycled coarse aggregate (RCA) replacement percentage, RAC strength, width to thickness ratio of square steel tube, profile steel ratio, eccentricity and slenderness ratio were subjected to eccentric compression tests. The failure process and characteristic of specimens under eccentric compression loading were observed in detail. The load-lateral deflection curves, load-train curves and strain distribution on the cross section of the composite columns were also obtained and described on the basis of test data. Results corroborate that the failure characteristics and modes of the specimens with different design parameters were basically similar under eccentric compression loads. The compression side of square steel tube yields first, followed by the compression side of profile steel. Finally, the RAC in the columns was crushed and the apparent local bulging of square steel tube was also observed, which meant that the composite column was damaged and failed. The composite columns under eccentric compression loading suffered from typical bending failure. Moreover, the eccentric bearing capacity and deformation of the specimens decreased as the RCA replacement percentage and width to thickness ratio of square steel tube increased, respectively. Slenderness ratio and eccentricity had a significantly adverse effect on the eccentric compression performance of composite columns. But overall, the composite columns generally had high-bearing capacity and good deformation. Meanwhile, the mechanism of the composite columns under eccentric compression loads was also analysed in detail, and the calculation formulas on the eccentric compression capacity of composite columns were proposed via the limit equilibrium analysis method. The calculation results of the eccentric compression capacity of columns are consistent with the test results, which verify the validity of the formulas, and the conclusions can serve as references for the engineering application of this kind of composite columns.

Surgical Treatment of Acute Necrotizing Klebsiella Pneumonia -Two cases report- (급성 괴사성 클렙시엘라 폐렴의 외과적 치료 -2례 보고-)

  • 류경민;김삼현;박성식;류재욱;최창휴;박재석;서필원
    • Journal of Chest Surgery
    • /
    • v.32 no.5
    • /
    • pp.484-488
    • /
    • 1999
  • Massive lung gangrene is a rare but very rapidly progressing fatal complication of lobar pneumonia. Etiologic agents are Klebsiella pneumoniae, Pneumococcus and Aspergillus, etc. Chest X-ray shows firm consolidation of the involved pulmonary lobe and bulging fissure due to the volume expansion of involved lung. CT-scan shows extensive lung parenchymal destructions with multiple small cavitary lesions. Recommended treatment is the early surgical intervention combined with antibiotics. Without surgical intervention, lung gangrene is known to progress toward sepsis, multiorgan failure, and high mortality. We report two cases of rapidly progressing massive lung gangrene by Klebsiella pneumonia treated by the resectional surgery.

  • PDF

A Study on the Geogrid Reinforced Stone Column System for Settlement Reduction Effect (침하저감효과를 위한 고강도 지오그리드 보강Stone Column 공법에 관한 연구)

  • Park, Si-Sam;Lee, Hoon-Hyun;Yoo, Chung-Sik;Lee, Dae-Young;Lee, Boo-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.838-845
    • /
    • 2006
  • Recently construction work in Korea, demands of favorable condition ground had been increased with industrialization acceleration and economic growth. However, because of limited land space, it was so hard to ensure favorable condition grounds that construction work proceeds until soft ground area on plans of road, railroad and industrial complex. In this case, soft ground improvement was required such as a stone column method. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, evaluates the stone columns reinforced by geogrid for settlement reduction and wide range of application of stone columns. Triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate. Then, 3-dimensional numerical analysis were conducted for application of stone column reinforced by geogrid as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on reinforcing depth change of geogrid.

  • PDF

A Estimation Method of Settlement and The Behaviour Characteristics of Granular Compaction Pile Reinforced with Uniformly Graded Permissible Concrete (등입도 투수성 콘크리트 보강 조립토 다짐말뚝의 거동특성 및 침하량 평가기법)

  • Kim, Jeong-Ho;Hwang, Jung-Soon;Kim, Seung-Wook;Kim, Jong-Min;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.362-371
    • /
    • 2006
  • The behaviour characteristics of Granular Compaction Pile(GCP) are mainly governed by the lateral confining pressure mobilized in the matrix soft soil to restrain the bulging failure of the granular compaction pile. The GCP method is most effective in soft soil with untrained shear strength ranging from $15\sim50\;kPa$. However, the efficiency of this method is falling down in the more compressible soil conditions, which does not provide sufficient lateral confinement. In the present study, the GCP method reinforced with uniformly graded permissible concrete is suggested for the extension of application to the soft ground. Also, large triaxial compression tests are conducted on composite- reinforced soil samples for verification of availability of the suggested method and the settlement estimation method of the reinforced GCP is proposed. Further, for the verification of a validity of the proposed method, predicted settlements are compared with results of numerical analyses. Tn addition, parametric studies are performed together with detailed analyses of relevant design parameters.

  • PDF

Effect of FRP composites on buckling capacity of anchored steel tanks

  • Al-Kashif, M.A.;Ramadan, H.;Rashed, A.;Haroun, M.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.361-371
    • /
    • 2010
  • Enhancement in the seismic buckling capacity of steel tanks caused by the addition of fiber reinforced polymers (FRP) retrofit layers attached to the outer walls of the steel tank is investigated. Three-dimensional non-linear finite element modeling is utilized to perform such analysis considering non linear material properties and non-linear large deformation large strain analysis. FRP composites which possess high stiffness and high failure strength are used to reduce the steel hoop stress and consequently improve the tank capacity. A number of tanks with varying dimensions and shell thicknesses are examined using FRP composites added in symmetric layers attached to the outer surface of the steel shell. The FRP shows its effectiveness in carrying part of the hoop stresses along with the steel before steel yielding. Following steel yielding, the FRP restrains the outward bulging of the tank and continues to resist higher hoop stresses. The percentage improvement in the ultimate base moment capacity of the tank due to the addition of more FRP layers is shown to be as high as 60% for some tanks. The percentage of increase in the tank moment capacity is shown to be dependent on the ratio of the shell thickness to the tank radius (t/R). Finally a new methodology has been explained to calculate the location of Elephant foot buckling and consequently the best location of FRP application.