• Title/Summary/Keyword: buildup

Search Result 232, Processing Time 0.02 seconds

Saengmaeg-san as an ergogenic aid: improving exercise performance

  • Kwak, Jae-Jun;Yook, Jang Soo;Jeong, Woo-Min;Kim, Ji-Sun;Ha, Min-Seong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1314-1322
    • /
    • 2020
  • Sports drinks help optimize and improve performance by delaying and eliminating the buildup of fatigue-causing substances in the body during exercise. Saengmaeg-san is a nature-friendly traditional beverage that has no side effects on the human body and can quench thirst. However, studies on the relationship between exercise ability and Saengmaeg-san are insufficient. The purpose of this study was to prescribe Saengmaeg-san during the summer training period of 4 weeks and to analyze the effect on body composition and exercise performance. Seventeen male participants were divided into 3 groups (Saengmaeg-san acid intake group [n=9], placebo group [n=8]), and body composition (height, weight, muscle mass, fat mass, BMI) and conducted exercise performance (total exercise time and HRmax). In our study, Saengmaeg-san intake had a positive effect on exercise performance, such as decreased body fat percentage, increased exercise time, and decreased HRmax. Therefore, Saengmaeg-san showed the potential as a sports drink. In the future, additional studies on fatigue-related substances, immune function-markers, and blood lipids are needed in order to clearly explain the change in exercise performance due to consumption of Saengmaeg-san.

IMPRESSION-DRIVEN DESIGN SCHEME FOR A CLASS OF 3D OBJECTS BASED ON MORPHABLE 3D SHAPE MODEL, AND ITS AUTOMATIC BUILDUP BY SUPPLEMENTARY FEATURE SAMPLING

  • Inaba, Yoshinori;Kochi, Jumpei;Ishi, Hanae;Gyoba, Jiro;Akamatsu, Shigeru
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.606-611
    • /
    • 2009
  • This paper describes a method for achieving a novel design within a class of 3D objects that would create a preferred impression on users. Physical parameters of the 3D objects that might strongly contribute to their visual impressions are sought through computational investigation of the impression ratings obtained for learning samples. "Car body" was selected as the class of 3D objects to be investigated. A morphable 3D model of car bodies that describes the variations in appearance using a smaller number of parameters was obtained. Based on each car body's rating for the impression of speediness obtained by paired comparison, the visual impression was transformed by manipulating the parameters defined in the morphable 3D model. The validity of the proposed method was confirmed by psychological experiments. A new scheme is also proposed to properly re-sample a novel object of a peculiar shape so that such an object could also be represented by the morphable 3D model.

  • PDF

Design and Fabrication of Micro Combustor (III) - Fabrication of Micro Engine by Photosensitive Class - (미세 연소기 개발 (III) - 감광 유리를 이용한 마이크로 엔진의 제작 -)

  • Lee, Dae-Hoon;Park, Dae-Eun;Yoon, Joon-Bo;Yoon, Eui-Sik;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1639-1645
    • /
    • 2002
  • Micro engine that includes Micro scale combustor is fabricated. Design target was focused on the observation of combustion driven actuation in MEMS scale. Combustor design parameters are somewhat less than the size recommended by feasibility test. The engine structure is fabricated by isotropic etching of the photosensitive glass wafers. Electrode formed by electroplating of the Nickel. Photosensitive glass can be etched isotropically with almost vertical angle. Bonding and assembly of structured photosensitive glass wafer form the engine. Combustor size was determined to be 1 mm scale. Movable piston is engraved inside the wafer. Ignition was done by nickel spark plug which was electroplated with thickness of 40 ${\mu}{\textrm}{m}$. The wafers were bonded by epoxy that resists high temperature. In firing test due to the bonding method and design tolerance pressure buildup by reaction was not confirmed. But ignition, flame propagation and actuation of micro structure from the reaction was observed. From the result basement of design and fabrication technology was obtained.

Efficient MQL-based Drilling of Inconel 601 (인코넬 601의 효율적인 MQL드릴링 가공)

  • Park, Ki-Beom;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In drilling Inconel 601, which is used for compressor cases in aircraft engines, a lot of cutting oil must be supplied. This prevents tools from wear and fracture due to the heat buildup resulting from the high-temperature resistance and toughness of this alloy. However, the cutting oil supply has compromised the machining environment. This has caused attention to shift to an environmentally friendly cutting fluid supply system called the Minimum Quantity Lubrication(MQL) system. The aim of this study was to find a more efficient drill processing method using MQL and to verify its performance. To that end, the properties of Inconel that make it difficult -to -drill were studied by a comparison with the drilling of SM45C. Specific factors (i.e., cutting force and tool wear) were examined in relation to the conditions in the MQL-based drilling system. Based on these results, a sealed cover and step feed were proposed as measures to increase the effectiveness of the MQL system. The efficiency of the proposed method was established.

FRACTURE STRENGTHS OF CEROMER CROWNS SUPPORTED ON THE VARIOUS ABUTMENT CORE MATERIALS

  • Kim Young-Oh;Ku Chul-Whoi;Park Young-Jun;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.647-653
    • /
    • 2004
  • Statement of problem. The effects of various core buildup materials which differs in the mechanical properties on the fracture strength of metal-free crowns is unknown. Purpose. This study was carried out to evaluate the fracture strengths of Artglass ceromer crowns supported by 3 different core materials in clinically simulated anterior tooth preparation. Material and methods. Ten crowns from each group were constructed to comparable dimensions on the various dies made by gold alloy, Ni-Cr alloy, and composite resin. The ten crowns were then cemented onto the dies and loaded until catastrophic failure took place. Fracture resistance to forces applied to the incisal edges of the anterior crowns supported by three types of dies was tested. Results. The ceromer crowns on the composite resin dies fractured at significantly lower values(287.7 N) than the ceromer crowns on the metal dies(approximately 518.4 N). No significant difference was found between the fracture values of the ceromer crowns on the dies of gold alloy and Ni-Cr alloy. Conclusion. The failure loads of the ceromer crowns on the metal dies were almost the same and not affected by the differences of casting alloys. However, the fracture values of the ceromer crowns on the resin dies were significantly reduced by the relative weak properties of composite resin core material.

Temperature Effect of the UASB Process for Treatment of Organic Waste (상향류식 혐기성 입상슬러지 공법의 유기폐수 처리 효율에 미치는 온도의 영향)

  • Park, Chul Hwi;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.45-54
    • /
    • 1996
  • Effects of temperature on the efficiency of the Upflow Anaerobic Sludge Blanket(UASB) process for treatment of wastewater from a starch and related products manufacturing industry were investigated using laboratory scale reactors equipped with two types of Gas-Solid Separator(GSS). Both fresh digested sludge and granular sludge stored nearly for one year at room temperature were good as a seeding material. The reactors seeded with aged granular sludge showed slow start-up, however, lowered activity at the initial period was recovered gradually. The GSS with an inner cylinder was proved to be effective in liquid-solid separation compared to the conventional type. Although the rate of organic removal and gas production per unit volatile suspended solids in the reactor reduced significantly as the temperature varied from 35 to $20^{\circ}C$, possibility of operation at low temperatures was shown as a result of gradual buildup of volatile suspended solids in the bed. Stable operation with a reduced efficiency was possible at a COD loading of $5-8kg/m^3/day$ at a temperature as low as $20^{\circ}C$.

  • PDF

Trends in climate finance and ODA for global water infrastructure (글로벌 물시장에서의 기후 금융과 ODA자금 동향 조사)

  • Kim, Jakyum;Kim, Seunghyun;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.169-182
    • /
    • 2020
  • ODA finance in the water sector has decreased after reaching a peak in 2012 although total ODA commitments have steadily increased according to OECD DAC data. However, climate finance in the water sector has increased so much since 2013 according to 7 MDB Joint report on Climate Finance. Water, especially, in climate change is the main issue for adaptation, and the total finance in the water sector reached 50% of the international public adaptation finance in 2016. However, the procedures for approval and the requirements of the proposals for climate funds are different from those for development finance. Notwithstanding the changes in money flows in the water sector, most korean engineering consulting firms in the water infrastructure area are not ready to win the funds relating to climate change. Therefore, It is important to understand a variety of sources of climate funds, characteristics, funding scale on each purpose and procedures for approval. Korean government needs to provide the firms the opportunities to buildup experiences by getting involved in climate adaptation projects with the financial support for developing PPFs, concept notes, and proposals.

The Effect of Rainfall on the Water Quality of a Small Reservoir (Lake Wangkung, Korea)

  • Hwang, Gil-Son;Kim, Jae-Ok;Kim, Jai-Ku;Kim, Young-Chul;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.39-43
    • /
    • 2005
  • The dynamics of water quality with the storm events were analyzed in a small reservoir for irrigation, Lake Wangkung. Water quality of the inflowing stream fluctuated seasonally with the variation of flow rate. Thermal stratification was consistent from April to October below 2 m depths and anoxic layer was developed below 2 m depth in summer. The unique feature of temperature showed that thermal stratification was disrupted by a heavy rain event during monsoon, but hypolimnetic hypoxia were reestablished after a few days. Phosphorus and nitrogen increased immediately following storm events. The marked increase may be due to the input of P-rich storm runoff from the watershed. Internal phosphorus loading can be one of the explanations for TP increases in summer. When there was a storm, total populations of phytoplankton and zooplankton was reduced immediately following the storm, indicating possible flushing of algae and zooplankton. After a lag period of low-density the plankton population bloomed to a peak again within five days after the storm. Turbid water in lake became clear again which coincided with the time of the phytoplankton buildup. The results demonstrate that water quality is regulated greatly by rainfall intensity in Lake Wangkung.

Food Preservation Technology at Subzero Temperatures: A Review

  • Shafel, Tim;Lee, Seung Hyun;Jun, Soojin
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.261-270
    • /
    • 2015
  • Purpose: Cold storage is the most popular method used to preserve highly perishable foods such as beef and fish. However, at refrigeration temperatures, the shelf life of these foods is limited, and spoilage leads to massive food waste. Moreover, freezing significantly affects the food's properties. Ice crystallization and growth during freezing can cause irreversible textural damage to foods through volumetric expansion, moisture migration induced by osmotic pressure gradients, and concentration of solutes,which can lead to protein denaturation. Methods: Although freezing can preserve perishable foods for months, these disruptive changes decrease the consumer's perception of the food's quality. Therefore, the development and testing of new and improved cold storage technologies is a worthwhile pursuit. Results: The process of maintaining a food product in an unfrozen state below its equilibrium freezing temperature is known as supercooling. As supercooling has been shown to offer a considerable improvement over refrigeration for extending a perishable product's shelf life, implementation of supercooling in households and commercial refrigeration units would help diminish food waste. Conclusions: A commercially viable supercooling unit for all perishable food items is currently being developed and fabricated. Buildup of this technology will provide a meaningful improvement in the cold storage of perishable foods, and will have a significant impact on the refrigeration market as a whole.

Evaluation of the Demineralizer Performance and $^{65}Zn$ Activity on Spent Resin for a Zinc Addition Operation

  • Kim, Kwang-Rag;Sung, Ki-Woung;Na, Jung-Won;Kim, Uh-Chul
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.191-195
    • /
    • 2003
  • Zinc acetate has been proposed and used to evaluate ionic zinc as a means to reduce reactor radiation buildup at several nuclear plants. Thermodynamic analysis of the aqueous zinc system using reliable data shows that the stability of the hydrolyzed zinc species increases with pH and temperature. Adsorption kinetics and isotherm studies were carried out to investigate the mixed resin performance of the zinc adsorption. The equilibrium isotherms of the zinc adsorption onto nuclear grade resin indicate that the data correlate well with the Langmuir model and that the adsorption is physical in nature. The maximum capacity according to the Langrnuir model is about 0.6meq/g for an initial zinc concentration of 100ppm at $50^{\circ}C$. The use of natural zinc could result in the generation of a $^{65}Zn$ activity with about $500{\mu}Ci/mL$ of resin after 12 months of operation.

  • PDF