• 제목/요약/키워드: building energy-saving design

검색결과 214건 처리시간 0.026초

A Study on the Evaluation Method for the Degree of Integration towards Office Towers in Different Climate Zones

  • Han, Seung-Hoon;Moon, Jin Woo;Kim, Kyoung-Hee
    • Architectural research
    • /
    • 제14권4호
    • /
    • pp.117-124
    • /
    • 2012
  • High rise office buildings represent one of the most energy-intensive architectural typologies. The growth of urban population necessitates sustainable high rise towers that lessen environmental impacts and energy consumption. Among various sustainable strategies, the integrated design is long known to be an important process that has great impact on building's sustainability. The framework for this paper is based on the case study of integrated towers that are located in different climate zones. The paper specifically addresses to what extent climate conditions influence the design of a high rise building and what kinds of the climate integrated design has been implemented. Qualitative case studies were carried out using published data and architectural drawing set. The technical work presented in the paper is based on computer simulation that examines the insolation analysis using hourly recorded weather data. The analysis results revealed that the site and building envelope integration and the site and building service systems have shown the most frequently employed in the integrated towers through the implementation of renewable resource integration, high performance envelopes and sustainable building service systems. Internal comfort and further energy saving in the integrated towers are offered through an automatic building management system. Due to the dynamic climate conditions, integration of building systems requires a sophisticated approach to building sustainability.

건물 외피의 열특성과 외주부 깊이에 따른 PAL에 관한 연구 (A study on the PAL according to thermal characteristic of building skin and perimeter zone depth)

  • 김지혜;김환용
    • 한국태양에너지학회 논문집
    • /
    • 제30권2호
    • /
    • pp.33-38
    • /
    • 2010
  • The perimeter zone is space which receives a significant effect of ambient condition, it is necessary to improve the thermal performance in order to building energy saving. For this reason, a lot of study about the active approach is being performed, such as perimeter-less air conditioning system. But the performance of the perimeter zone is necessary to improve, through the passive approach. Therefore, the purpose of this study is to provide basic materials of energy-saving design of perimeter zone, based of the PAL that simulation changing the thickness of insulation and the rate of windows.

창호 구성 요소에 따른 난방에너지 절감율 예측에 관한 연구-공동주택을 중심으로 (Prediction of Heating Energy Saving Rate on the Window Type-Focus on the Apartment House)

  • 김경아;문현준;유기형
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.54-61
    • /
    • 2013
  • This is study on the glazing performance of the apartment house to predict energy saving rate when the early design stage by calculating heating load. there are various factors of the window type in apartment building to save energy such as window's U-value, SC or SHGC, window wall ration, frame factor, sunshade coefficient and so on. In this study, we analyzed the heating load focused on the U-value, SC and window wall ration using variable heating degree days method for a small and middle size units $59m^2$, $84m^2$, respectively. Each cases were calculated heating load of the real models compared to standard model to predict energy saving rate. From those cases it was drew the conclusion that were window's U-value, SC and window wall ration for the small and middle size units to expect 10% energy saving rate at least.

노출콘크리트 중단열 벽체의 단열성능 분석 (Insulation Performance Analysis of Exposed Concrete Sandwich Wall)

  • 여창재;유정호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.105-106
    • /
    • 2016
  • The study of the sandwich wall with the increasing interest in building energy consumption have been actively conducted. This study designed exposed sandwich wall in the light of energy saving design standard and thermal bridge of share connection. The heat insulating performance was analyzed U-fator using calculation program provided in passive houses association and KS F 2277 (method of measuring thermal insulation of construction component materials).

  • PDF

지역별 기후에 따른 비주거 건축물 패시브 수준 단열기준 연구 (Study on Insulation Standards at Passive Level of Non-Residential Buildings by Regional Climate)

  • 김예원;유기형
    • 한국태양에너지학회 논문집
    • /
    • 제37권6호
    • /
    • pp.51-58
    • /
    • 2017
  • This study proposes an appropriate level of insulation standards by region through annual heating energy requirements according to regional climate. The reference buildings out of non-residential buildings approved by the energy saving design standard for buildings were derived in the previous study, in which the annual heating energy requirements for each building were as follows when the insulation standard for building members in four regions (Pyeongchang, Seoul, Gwang-ju, and Jeju) suggested by the energy saving design standard for buildings: $29.8kWh/m^2$ in Pyeongchang, $17.5kWh/m^2$ in Seoul, $14.4kWh/m^2$ in Gwangju, and $16.7kWh/m^2$ in Jeju. To satisfy the passive level of insulation standards for these buildings, in case that roof/floor of buildings in Pyeongchang and Seoul was $0.2W/m^2K$, the minimum window thermal transmittance should satisfy $0.9W/m^2K$ and the minimum wall thermal transmittance should satisfy $0.1W/m^2K$ in the case of Pyeongchang. On the other hand, the minimum window thermal transmittance should satisfy $1.5W/m^2K$ and the minimum wall thermal transmittance should satisfy $0.14W/m^2K$ in the case of Seoul. For Jeju regions, the minimum wall thermal transmittance should satisfy $0.34W/m^2K$ to meet the passive level of buildings. Based on the above results, the thermal transmittance of each member by region should take the outdoor climate condition of the region into consideration to satisfy the passive level of buildings.

공동주택 단지의 주동형식에 따른 냉난방 에너지 비용 분석 (An Analysis of Heating and Cooling Energy Cost according to Building Type of Apartment Complex)

  • 노지웅
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.96-105
    • /
    • 2013
  • This study aims to investigate the energy performance of apartment in respect of complex design, building type and generation house layout and finally to produce the guide line for energy saving design. To grasp the present condition and problem about this subject, apartment building types were examined and representative types were extracted. Considering azimuth angle, private area, and generation number, building type of the subject apartment was classified in detail, energy simulation was conducted, and the effect to energy cost was compared. In the research, using VE energy simulation program, the heating and cooling load were calculated and converted to energy cost. It is expected that this analysed results will be basic data for the more integrated study. Research consequence can be summarized as follow: 1) Energy cost is compared according to several azimuth in plank '一' type apartment. As the results, calculated gas cost is the best in $49^{\circ}$, but total cost is in $-31^{\circ}$. 2) Apartment buildings of tower types are compared, it is resulted that 'Y' type (azimuth $-7^{\circ}$, $-20^{\circ}$) is the best in gas cost, but the total cost is worst because of high cooling load.

지열을 이용한 학교시설의 냉·난방시스템 효율성분석 -에너지 소비량을 중심으로- (Efficiency Analysis of the HVAC system in the School Facilities Using the Geothermal Energy -Focused on the energy consumption-)

  • 박동순;이재림
    • 교육녹색환경연구
    • /
    • 제6권2호
    • /
    • pp.25-52
    • /
    • 2007
  • This paper is focused on the economical efficiency of the geothermal heat pump system in school. As the importance of problems of environment and energy becomes larger, the development and distribution of energy-saving technology in the whole nation has become influential. This paper is intended, targeting on school buildings scattered all over the country, to evaluate the introduction and possibility of a terrestrial heat system which is in the first stage of introduction in the country, through energy consumption and efficiency in case where a terrestrial heat system is introduced. To do that, the author performed a qualitative analysis of the heat pump system using various terrestrial heat energy and the system introduced to existing school buildings and, through the analysis, made tentative evaluation on the most environment-friendly and energy saving type system. Also, the author performed simulation analysis using a currently typical school building standard and, on the basis of this result, conducted efficiency analysis of various heat pump systems. The conclusion according to synthetical analysis & evaluation can be summarized as follows. In case a heat pump system is introduced to a school building, it was deemed the investment in the early stage would increase, but the investment could be collected within 5~6 years through reduction of large operation expenses. Also, it was analyzed in case of terrestrial heat contracted heat mode using midnight electric power among heat pump systems, not only early investment but also operation expenses could be reduced to a great extent. Accordingly in case the system using terrestrial heat energy is applied to the school buildings that are to be newly built or repaired in the future, it will provide an object-lesson to students as well as contributing to energy saving.

  • PDF

주건공간 관련 친환경 디자인 요소의 중요도와 선호 - 김해지역 아파트 거주자를 대상으로 - (The Importance and Preference of Eco-Friendly Design Elements Related to Residential Space - Focused on the Residents in Gimhae -)

  • 박진경;오찬옥
    • 한국실내디자인학회논문집
    • /
    • 제21권1호
    • /
    • pp.86-94
    • /
    • 2012
  • The purpose of this study was to examine the importance of eco-friendly design elements related to residential space by residents and what element they prefer. To achieve this, 18 eco-friendly design elements related to residential space were selected from the Green Building Certification Criteria and the relevant research papers. These elements were categorized into four areas; the ecological environment area (4 elements), the indoor environmental climate one (4 elements), the energy and resource saving one (6 ones), and the material one(4 ones). On the base of these 18 elements, the importance degree of each element was examined by using 5-point Likert scale. The subjects were 299 housewives living in apartment houses in Jangyu new town, Gimhae. The subjects perceived strongly the importance of eco-friendly design elements, but many of them did not know about Green Building Certification Criteria. Overall importance of 18 elements by the residents was very high. Also, the indoor environmental climate area was considered as the most important one, followed by the energy and resource saving area, the material area, and the ecological environment one.

  • PDF

그린리모델링 실증 시범사업을 통한 프로세스의 전 과정에 대한 검토 (Verification of the Entire Process Model through Green Remodeling Pilot Project)

  • 정진우;주정훈;이건호
    • 한국태양에너지학회 논문집
    • /
    • 제38권3호
    • /
    • pp.37-45
    • /
    • 2018
  • The purpose of this study is to review all phases of the pilot project through the implementation of the Green Remodeling process. The Green Remodeling process was developed to facilitate anyone's ease of use. The Green Remodeling process consists of five phases : project, plan, design, construction, operation and maintenance. Each stage simulation was performed and the energy saving was predicted. Architects can easily obtain energy information of a building. In this study, we propose a green remodeling proposal plan through pilot project. Ultimately, the spread of green remodeling will greatly contribute to achieving the goal of reducing greenhouse gas emissions.

하이브리드 데시칸트 제습방식 에너지 절감 요소분석 (Energy Saving Components Analysis in Hybrid Desiccant Dehumidification System)

  • 박종일;박승태
    • 설비공학논문집
    • /
    • 제27권11호
    • /
    • pp.603-608
    • /
    • 2015
  • The hybrid desiccant dehumidifier is an energy-effective system in comparison with the existing desiccant dehumidifier. Its main feature is to use the heat given off by the condenser as the react heat source. Through analysis of the elements for a more efficient design of the hybrid desiccant dehumidifier, it is evident that those energy-saving components do not work individually, but organically influence the efficiency of the equipment. Therefore, the hybrid desiccant dehumidifier may be an important product in the dehumidification industry.