• Title/Summary/Keyword: buckling and vibration analysis

Search Result 174, Processing Time 0.02 seconds

Vibration and Stability Characteristics of Cylindrical Panels by the Galerkin Method (Galerkin 해석법에 의한 원통 Panel의 진동 및 좌굴특성)

  • Park, Moon Ho;Park, Sung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 1991
  • This paper presents a numerical analysis procedure and a characteristics for vibration and buckling of the cylinderical panels. The panels with simply-simply or simply-clamped edge supports are subjectes to circumferential compressive or flexural stresses. The differential equations governing vibration and buckling for these panels are derived by using the fundamental differential equation of the Love-Timoshenko and are solved numerically via the Galerkin method. The panel with simply-clamped edge supports is used a trigonometric function or a eigen function of a beam as a trial function and the effects of trial functions on numerical solutions are displayed. Numerical results are presented to demonstrate the effects of the flexural parameters in natural frequencies and coefficients of critical buckling and some typical mode shapes of vibration and buckling are also presented.

  • PDF

Viscoelastic Bending, Vibration and Buckling Analysis of Laminated Composite Plates on Two-parameter Elastic Foundation (2개 매개변수를 갖는 탄성지반위에 놓인 복합재료 적층판의 점탄성적 휨, 진동 좌굴해석)

  • Han, SungCheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.443-455
    • /
    • 2001
  • An energy method has been used for an elastic formulation of bending vibration and buckling analysis of laminated composite plates on two-parameter elastic foundations. A quasi-elastic method is used for the solution of viscoelastic analysis of the laminated composite plates. The third-order shear deformation theory is applied by using the double-fourier series. To validate the derived equations the obtained displacements for simply supported orthotropic plates on elastic foundations are compared with those of LUSAS program Numerical results of the viscoelastic bending vibration and buckling analysis are presented to show the effects of layup sequence number of layers material anisotropy and shear modulus of foundations.

  • PDF

A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates

  • Hebali, Habib;Bakora, Ahmed;Tounsi, Abdelouahed;Kaci, Abdelhakim
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.473-495
    • /
    • 2016
  • This work presents a bending, buckling, and vibration analysis of functionally graded plates by employing a novel higher-order shear deformation theory (HSDT). This theory has only four unknowns, which is even less than the first shear deformation theory (FSDT). A shear correction coefficient is, thus, not needed. Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

A unified formulation for modeling of inhomogeneous nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.369-377
    • /
    • 2018
  • In this article, buckling and free vibration of functionally graded (FG) nanobeams resting on elastic foundation are investigated by developing various higher order beam theories which capture shear deformation influences through the thickness of the beam without the need for shear correction factors. The elastic foundation is modeled as linear Winkler springs as well as Pasternak shear layer. The material properties of FG nanobeam are supposed to change gradually along the thickness through the Mori-Tanaka model. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. From Hamilton's principle, the nonlocal governing equations of motion are derived and then solved applying analytical solution. To verify the validity of the developed theories, the results of the present work are compared with those available in literature. The effects of shear deformation, elastic foundation, gradient index, nonlocal parameter and slenderness ratio on the buckling and free vibration behavior of FG nanobeams are studied.

Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.691-729
    • /
    • 2018
  • In this paper the hygro-thermo-mechanical vibration and buckling behavior of embedded FG nano-plates are investigated. The Eringen's and Gurtin-Murdoch theories are applied to study the small scale and surface effects on frequencies and critical buckling loads. The effective material properties are modeled using Mori-Tanaka homogenization scheme. On the base of RPT and HSDPT plate theories, the Hamilton's principle is employed to derive governing equations. Using iterative and GDQ methods the governing equations are solved and the influence of different parameters on natural frequencies and critical buckling loads are studied.

Free Vibration of Compressed Laminated Composite Beam-Columns with Multiple Delaminations (압축하중을 받는 다층간분리 적층 복합 보-기둥의 자유진동)

  • 이성희;박대효;백재욱;한병기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.501-508
    • /
    • 2001
  • Free vibration analysis of multi-delaminated composite beam-columns subjected to axial compression load is performed in the present study. In order to investigate the effects of multi-delaminations on the natural frequency and elastic buckling load of multi-delaminated beam-columns, the general kinematic continuity conditions are derived from the assumption of constant slope and curvature at the multi-delamination tip. Characteristic equation of multi-delaminated beam-column is obtained by dividing the global multi-delaminated beam-columns into segments and by imposing recurrence relation from the continuity conditions on each sub-beam-column. The natural frequency and elastic buckling load of multi-delaminated beam-columns according to the incremental load of axial compression, which is limited to the maximum elastic buckling load of sound laminated beam-column, are obtained. It is found that the sizes, locations and numbers of multi-delaminations have significant effect on natural frequency and elastic buckling load, especially the latter ones.

  • PDF

Free Vibration and Buckling Analysis of the Composite Laminated Cylindrical Shells with the Orthogonal Stiffeners (직교보강된 복합재료 원통셀의 진동 및 좌굴해석)

  • 이영신;김영완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.349-354
    • /
    • 1996
  • The analytical solutions for the free vibration and buckling of cross-ply laminated composite cylindrical shell with axial stiffeners(stringers) and circumferential stiffeners(rings), that is, orthogonally stiffened shells, are presented using the energy method. The stiffeners are assumed to be an integral part of the shell and have been directly included in analysis(it's called discrete stiffener theory). The effect of the parameters such as the stacking sequences, the shell thickness, the shell length-to-radius ratio are studied. By comparison with the previously published analytical results for the stiffened cylindrical shells, it is shown that natural frequencies can be determined with adequate accuracy.

  • PDF

Vibration and Post-buckling Behavior of Laminated Composite Doubly Curved Shell Structures

  • Kundu, Chinmay Kumar;Han, Jae-Hung
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.21-42
    • /
    • 2009
  • The vibration characteristics of post-buckled laminated composite doubly curved shells are investigated. The finite element method is used for the analysis of post-buckling and free vibration of post-buckled laminated shells. The geometric non-linear finite element model includes the general non-linear terms in the strain-displacement relationships. The shell geometry used in the present formulation is derived using an orthogonal curvilinear coordinate system. Based on the principle of virtual work the non-linear finite element equations are derived. Arc-length method is implemented to capture the load-displacement equilibrium curve. The vibration characteristics of post-buckled shell are performed using tangent stiffness obtained from the converged deflection. The code is first validated and then employed to generate numerical results. Parametric studies are performed to analyze the snapping and vibration characteristics. The relationship between loads and fundamental frequencies and between loads and the corresponding displacements are determined for various parameters such as thickness ratio and shallowness.

A Study on the Buckling and the Vibration Analysis of the Stiffened Plates with Elastic Spring (탄성스프링으로 지지된 보강판의 좌굴 및 진동 해석에 관한 연구)

  • 백승목;오숙경;김일중;이용수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.35-42
    • /
    • 1999
  • This study is to analyze the buckling and the vibration of the rectangular stiffened plates with elastic springs by Finite Element Method. Boundary conditions are two types, one is all simply supported edges, another all clamped edges. To validate Finite Element Method, the buckling stresses of the stiffened plates without elastic springs are compared with the existing ones. The natural frequency parameters of the stiffened plates with or without elastic springs by Finite Element Method are also compared with the ones of SAP2000. The natural frequency parameters and the buckling stresses of the stiffened plates with elastic springs by Finite Element Method are calculated for the variation of the stiffness of the elastic springs and aspect ratio.

  • PDF

Buckling and Vibration Analysis of Thick Plates with Concentrated Mass (집중 질량을 갖는 후판의 좌굴 및 진동해석)

  • 김일중;오숙경;이용수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.467-474
    • /
    • 2001
  • This paper is for the buckling and vibration analysis of thick plate with concentrated mass on a inhomogeneous pasternak foundation. A thick rectangular plate resting on a inhomogeneous pasternak foundation is isotropic, homogeneous and composite with linearly elastic material. In order to analyize plate which is supported on inhomogeneous pasternak foundation, the value of winkler foundation parameter(WFP) of centural and border zone of plate are chosen as Kwl and Kw2 respectively. The value of Kwl and Kw2 can be changed as 0, 10, 10 /sup 2/, 10 / sup 3/ and the value of SFP(shear foundation parameter) also be changed 0, 5, 10, 15 respectively. Finally, In this paper, buckling stress of rectangular plate on the inhomogeneous pasternak foundation, natural frequency of this plate with or without uniform in-plane axial stresses are calculated

  • PDF