• Title/Summary/Keyword: bubbling

Search Result 220, Processing Time 0.032 seconds

Experimental Study on the Dissociation Characteristics of Methane Hydrate Pellet by Hot Water Injection (열수 주입법에 의한 메탄가스 하이드레이트 펠릿의 해리 특성에 관한 실험 연구)

  • Lee, Seung-Han;Yoon, Yong-Seok;Seong, Kwan-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1177-1184
    • /
    • 2011
  • Gas-to-Solid (GTS) technology is composed of three stages: hydrate production, transportation, and regasification. For efficient operation of regasification plants, it is crucial to predict the temperature and flow rate of hot water necessary to dissociate the hydrate pellets. Dissociated gas escaping from the pellet surface, when in contact with hot water, will alter the flow field and consequently alter the heat transfer rate. Methane hydrate pellet dissociation characteristics in low- to moderatetemperature water were investigated by taking images of the changes in the hydrate pellets' shapes in a pressurized reactor and measuring the total time required for complete melting of the pellets. The effects of water temperature, hydrate conversion rate, and flow speed on the dissociation completion time were also investigated. Bubbling gas released from the pellet surface induced a secondary flow that enhanced the heat transfer rate and thus decreased the dissociation time. It was also found that a considerable flow rate was needed to significantly decrease the dissociation time.

Fundamental Study on Solvent Sublation Using Salphen and Its Application for Separative Determination of Trace Ni(II), Co(II) and Cu(II) in Water Samples

  • Kim, Young-Sang;In, Gyo;Kim, Mi-Hyun;Choi, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1757-1762
    • /
    • 2006
  • A solvent sublation using salphen as a ligand was studied and applied for the determination of trace Ni(II), Co(II) and Cu(II) in water samples. The fundamental study was investigated by a solvent extraction process because the solvent sublation was done by extracting the floated analytes into an organic solvent from the aqueous solution. The salphen complexes of Ni(II), Co(II) and Cu(II) ions were formed in an alkaline solution of more than pH 8 and then they were extracted into m-xylene. It was known that the each metallic ion formed 1 : 1 complex with the salphen and the logarithmic values of extraction constants for the complexes were 3.3 5.1 as an average value. Based on the preliminary study, the procedure was fixed for the separation and concentration of the analytes in samples. Various conditions such as the pH of solutions, the influence of $NaClO_4$, the bubbling rate and time of $N_2$ gas, and the type of organic solvent were optimized. The metal-salphen complexes could be extracted into m-xylene from the solution of more than pH 8, but the pH could be shifted to acidic solution of pH 6 by the addition of $NaClO_4$. In addition, the solvent sublation efficiency of the analytes was increased by adding $NaClO_4$. The recovery of 97-115% was obtained in the spiked samples in which given amounts of 0.3 mg/L Ni(II), 0.8 mg/L Co(II) and 0.04 mg/L Cu(II) were added.

The Surface Morphology of ZnO Grown by Metal Organic Chemical Vapor Deposition for an Application of Solar Cell (태양전지응용을 위하여 MOCVD 방법으로 성장된 ZnO 박막의 기판온도에 따른 표면특성)

  • Kim, Do-Young;Kang, Hye-Min;Kim, Hyung-Jun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.177-183
    • /
    • 2010
  • We report on the deposition of ZnO films using a metal organic chemical vapor deposition (MOCVD) as a function of pushing pressure and kind of reactant such as oxygen gas and water A diethylzinc (DEZ) is supplied and controlled by Ar pushing pressure through bubbling system. Oxygen gas and water are used as reactant in order to form oxidation. We knew that the surface roughness is related in the process conditions such as reactant kind and DEZ flow rate. A substrate temperature has little role of surface roughness with $O_2$ reactant. However, $H_2O$ reactant makes it to increase over the 20 times. We could get the maximum roughness of 39.16 nm at the 90 sccm of DEZ Ar flow rate, the 8 Pa of $H_2O$ vapor pressure, and the $140^{\circ}C$ of substrate temperature. In this paper, we investigated the ZnO films for the application to the light absorption layer of solar cell layer.

Effect of an Additives on Simultaneous Removal of NOx, $So_2$by Corona Discharge (코로나 방전에 의한 NOx, $So_2$동시제거에서 첨가제의 영향)

  • 박재윤;고용술;이재동;손성도;박상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.451-457
    • /
    • 2000
  • Experimental investigations on the effect of two kinds of additives ; aqueous NaOH solution and ammonia(NH$_3$) for removal of NOx and SO$_2$ simultaneously by corona discharge were carried out. The simulated combustion flue gas was[NO(0.02[%])-SO$_2$(0.08[%])-$CO_2$-Air-$N_2$] Volume percentage of aqueous NaOH solution used was 20[%] and $N_2$flow rate was 2.5[$\ell$/min] for bubbling aqueous NaOH solution Ammonia gas(14.81[%]) balanced by argon was diluted by air. NH$_3$ molecular ratios(MR) based on [NH$_3$] and [NO+SO$_2$] were 1, 1.5 and 2.5 The vapour of aqueous NaOH solution and NH$_3$was introduced to the main simulated combustion flue gas duct through injection systems which were located at downstream of corona discharge reactor. NOx(NO+NO$_2$) removal rate by injecting the vapour of aqueous NaOH solution was much better than that by injecting NH$_3$however SO$_2$removal rate by injecting NH$_3$was much better than that by injecting the vapour of aqueous NaOH SO$_2$removal rate slightly increased with increasing applied voltage. When the vapour of aqueous NaOH solution and NH$_3$were simultaneously injection NOx and SO$_2$ removal rate were significantly increased.

  • PDF

CHARACTERISTICS OF SELF-LEVELING BEHAVIOR OF DEBRIS BEDS IN A SERIES OF EXPERIMENTS

  • Cheng, Songbai;Yamano, Hidemasa;Suzuki, TYohru;Tobita, Yoshiharu;Nakamura, Yuya;Zhang, Bin;Matsumoto, Tatsuya;Morita, Koji
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.323-334
    • /
    • 2013
  • During a hypothetical core-disruptive accident (CDA) in a sodium-cooled fast reactor (SFR), degraded core materials can form roughly conically-shaped debris beds over the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of the core material pool. However, coolant boiling may ultimately lead to leveling of the debris bed, which is crucial to the relocation of the molten core and heat-removal capability of the debris bed. To clarify the mechanisms underlying this self-leveling behavior, a large number of experiments were performed within a variety of conditions in recent years, under the constructive collaboration between the Japan Atomic Energy Agency (JAEA) and Kyushu University (Japan). The present contribution synthesizes and gives detailed comparative analyses of those experiments. Effects of various experimental parameters that may have potential influence on the leveling process, such as boiling mode, particle size, particle density, particle shape, bubbling rate, water depth and column geometry, were investigated, thus giving a large palette of favorable data for the better understanding of CDAs, and improved verifications of computer models developed in advanced fast reactor safety analysis codes.

원자층증착법을 이용한 Y2O3 박막 형성 및 저항 스위칭 특성

  • Jeong, Yong-Chan;Seong, Se-Jong;Lee, Myeong-Wan;Park, In-Seong;An, Jin-Ho;Rao, Venkateswara P.;Dussarrat, Christian;Noh, Wontae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.229.2-229.2
    • /
    • 2013
  • Yttrium oxide (Y2O3)는 band gap이 5.5 eV 정도로 상대적으로 넓고, 굴절상수가 1.8, 유전율이 10~15, Silicon 과의 격자 불일치가 작은 특성을 가지고 있다. 또한 녹는점이 높아 열적으로 안정하기 때문에 전자소자 및 광학소자에 다양하게 응용되는 물질이다. Y2O3 박막은 다양한 방법으로 증착할 수 있는데, 그 방법에는 e-beam evaporation, laser ablation, sputtering, thermal oxidation, metal-organic chemical vapor deposition, and atomic layer deposition (ALD) 등이 있다. ALD는 기판 표면에 흡착된 원자들의 자기 제한적 반응에 의하여 박막이 증착되기 때문에 박막 두께조절이 용이하고 step coverage와 uniformity 측면에서 큰 장점이 있다. 이전에는 Y(thd)3 and Y(CH3Cp)3 와 같은 금속 전구체를 이용하여 ALD를 진행하여, 증착 속도가 낮고 defect이 많아 non-stoichiometric한 조성의 박막이 증착되는 문제점이 있었다. 이번 연구에서는, (iPrCp)2Y(iPr-amd)와 탈이온수를 사용하여 Y2O3 박막을 증착하였다. Y2O3 박막 증착에 사용한 Y 전구체는 상온에서 액체이고 $192^{\circ}C$ 에서 1 Torr의 높은 증기압을 갖는다. Y2O3 박막 증착을 위하여 Y 전구체는 $150^{\circ}C$ 로 가열하여 N2 gas를 이용하여 bubbling 방식으로 공정 챔버 내로 공급하였다. Y2O3 박막의 ALD window는 $250{\sim}350^{\circ}C$ 였으며, Y 전구체의 공급시간이 5초에 다다르자 더 이상 증착 두께가 증가하지 않는 자기 제한적 반응을 확인할 수 있었다. 그리고 증착된 Y2O3 박막의 특성 분석을 위해 Atomic force microscopy (AFM)과 X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) 를 진행하였다. 박막의 Surface morphology 는 매끄럽고 uniform 하였으며, 특히 고체 금속 전구체를 사용했을 때와 비교하여 수산화물이 거의 없는 박막을 얻을 수 있었다. 그리고 조성 분석을 통해 증착된 Y2O3 박막이 stoichiometric하다는 것을 알수 있었다. 또한 metal-insulator-metal (MIM) 구조 (Ru/Y2O3/Ru) 의 resistor 소자를 형성하여 저항 스위칭 특성을 확인하였다.

  • PDF

Effect of Flux on Recovery of Aluminum During Molten Metal Treatment of Aluminum Can Scrap (알루미늄 캔 스크랩의 용탕처리 시 알루미늄 합금 회수에 미치는 플럭스의 영향)

  • Han, Chulwoong;Ahn, Byung-Doo;Kim, Dae-Guen;Lee, Man Seung;Kim, Yong Hwan
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.70-80
    • /
    • 2020
  • This study investigates the effect of flux type and mixing ratio on efficiency in aluminum can scrap recycling using induction furnace. The removal of surface coating layer of aluminum can scrap was possible through heat treatment at about 500 ℃ for about 30 min. The temperature for the melting process was set to be slightly above the melting temperature of the aluminium can scrap. The molten metal treatment was performed with different types of flux and mixing ratio. As a result, The optimum efficiency of Al recovery ratio was revealed when the process was performed with at least 3 wt.% of the flux (Salt and MgCl2 mixture of ratio 70:30) at 750 ℃. The mechanical property of the recovered Al alloy showed that the tensile strength is about 249 MPa and elongation is about 14 %. This result was found to be similar to the mechanical property of the virgin Al 5083 alloy.

Determination of Zinc and Lead in Water Samples by Solvent Sublation Using Ion Pairing of Metal-Naphthoate Complexes and Tetra-n-butylammonium Ion

  • Kim, Yeong Sang;Choe, Yun Seok;Lee, Won;Lee, Yong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.821-826
    • /
    • 2001
  • Solvent sublation has been studied for the separation and determination of trace Zn(Ⅱ) and Pb(Ⅱ) in water samples. A synergy producing method was utilized to improve the efficiency of extraction in the sublation using an ion-pair of metal-naphth oate {M-(Nph)3- } complexes and tetra-n-butylammonium (TBA+ ) ion. After the M-(Nph)3- complexes were formed by adding 1-naphthoic acid to the sample solution, tetra-n-butylammonium bromide was added in the solution to form the ion-pair. And sodium lauryl sulfate (SLS) was added to make the ion-pair hydrophobic. The ion-pairs of the metal complexes were floated and extracted into methylisobutyl ketone (MIBK) from the aqueous solution by bubbling with nitrogen gas in a flotation cell. Metal ions in MIBK solution were measured by graphite furnace-AAS. Experimental conditions were optimized as follow so. After the pH of a 1.0 L water sample was adjusted to 5.0, 6.0 mL of 0.1 M 1-HNph and 10 mL of 0.03 M TBA-bromide were added to the sample to form ion-pairs, and 2.0 mL of 0.2%(w/v) SLS was added to make the ion-pairs hydrophobic. The solution was bubbled with 30 mL/min N2 gas for 5 minutes in a flotation cell. Linear calibration curves were obtained for the determination of Zn(Ⅱ) and Pb(Ⅱ) in several water samples. Reproducible results of showing a relative standard deviation of < 10% and recoveries of 80-100% could be obtained.

Basic Design and Sensitivity Analysis of 3 MWth Chemical Looping Combustion System for LNG Combustion and Steam Generation (LNG 연소 및 스팀생산을 위한 3 MWth 급 매체순환연소 시스템의 기본설계 및 민감도 분석)

  • RYU, HO-JUNG;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOOSEOB;KIM, DAEWOOK;KIM, DONG-WON;LEE, GYU-HWA;BAEK, JEOM-IN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.374-387
    • /
    • 2021
  • Basic design of 3 MWth chemical looping combustion system for LNG combustion and steam generation was conducted based on the mass and energy balance and the previous reactivity test results of oxygen carrier particles. Process configuration including fast fluidized bed (air reactor), loop seal and bubbling fluidized bed (fuel reactor) was confirmed and their dimensions were determined by mass balance. Then, the external fluidized bed heat exchanger (FBHE) was adopted based on the energy balance to extract heat from the system. The optimum reactor design and operating condition was confirmed with sensitivity analysis by modifying system configuration based on the mass and energy balance.

Effect of Height on CNT Aggregates Size and Shape in Freeboard Region of a Fluidized Bed (유동층 반응기 프리보드 내 높이에 따른 CNT 응집체 형상 변화)

  • Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.105-110
    • /
    • 2019
  • Effect of height on the size and shape of carbon nanotube (CNT) aggregates in the freeboard region of a bubbling fluidized bed ($0.15m\;i.d.{\times}2.6m\;high$) has been determined. Feret diameter and Heywood diameter of the CNT aggregates in the freeboard region of fluidized bed increased with increasing gas velocity. The average aggregate diameters and CNT particle number in the aggregates decreased with increasing of height in the freeboard. Aspect ratio increased as the location was closer to the surface of the dense phase, but decreased at the highest location. Solidity did not show any significant changes with height. The results showed the aggregates formation process is affected by the height in the freeboard. A correlation was proposed to predict the Heywood diameter of the CNT aggregates.