DOI QR코드

DOI QR Code

Effect of Flux on Recovery of Aluminum During Molten Metal Treatment of Aluminum Can Scrap

알루미늄 캔 스크랩의 용탕처리 시 알루미늄 합금 회수에 미치는 플럭스의 영향

  • Han, Chulwoong (Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology) ;
  • Ahn, Byung-Doo (DS LIQUID) ;
  • Kim, Dae-Guen (Institute for Advanced Engineering) ;
  • Lee, Man Seung (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Kim, Yong Hwan (Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology)
  • 한철웅 (한국생산기술연구원 뿌리산업기술연구소) ;
  • 안병두 ((주)디에스리퀴드 기술연구소) ;
  • 김대근 (고등기술연구원 신소재공정센터) ;
  • 이만승 (목포대학교 공과대학 신소재공학과) ;
  • 김용환 (한국생산기술연구원 뿌리산업기술연구소)
  • Received : 2020.01.20
  • Accepted : 2020.02.18
  • Published : 2020.02.28

Abstract

This study investigates the effect of flux type and mixing ratio on efficiency in aluminum can scrap recycling using induction furnace. The removal of surface coating layer of aluminum can scrap was possible through heat treatment at about 500 ℃ for about 30 min. The temperature for the melting process was set to be slightly above the melting temperature of the aluminium can scrap. The molten metal treatment was performed with different types of flux and mixing ratio. As a result, The optimum efficiency of Al recovery ratio was revealed when the process was performed with at least 3 wt.% of the flux (Salt and MgCl2 mixture of ratio 70:30) at 750 ℃. The mechanical property of the recovered Al alloy showed that the tensile strength is about 249 MPa and elongation is about 14 %. This result was found to be similar to the mechanical property of the virgin Al 5083 alloy.

본 연구에서는 유도로를 사용하여 알루미늄 캔 스크랩의 재활용 효율을 플럭스 종류와 혼합 비율의 영향에 대해 조사하였다. 알루미늄 캔 제조 공정에서 발생한 알루미늄 캔 스크랩의 표면 코팅층 약 500 ℃에서 30 분간 열처리를 통해 제거가 가능하였다. 용해 공정 온도는 알루미늄 합금 용해 온도보다 높은 온도로 설정하였고, 플럭스 종류와 혼합 비율에 따른 용탕처리를 진행하였다. 그 결과, 750 ℃에서 3 wt.%의 플럭스(Salt flux와 MgCl2 혼합비율 70:30)의 조건에서 알루미늄을 최적으로 회수 할 수 있었다. 회수된 Al합금은 인장강도 249 MPa과 연신율 14 %로써 Al5083 소재와 거의 동일한 기계적 특성을 나타냄을 알 수 있었다.

Keywords

References

  1. Y. Nam, J. Choi, Y-C Jang, et al., 2016 : Estimation of greenhouse gas reduction and energy savings by aluminum can recycling, J. of Korea Society of Waste Management, 33(1), pp.29-37. https://doi.org/10.9786/kswm.2016.33.1.29
  2. Jeon, E. K., Park, J. Y., and Park, I. M., 2007 : Application trend of aluminum castings in automotive component, J. Korea Foundry Society, 27(1), pp.20-23.
  3. Cui, J., and Roven, H. J., 2010 : Recycling of automotive aluminum, 20, pp.2057-2063. https://doi.org/10.1016/S1003-6326(09)60417-9
  4. Ab Rahim, S. N., Lajis, M. A., and Ariffin, S., 2015 : A review on recycling aluminum chips by hot extrusion process, Procedia CIRP, 26, pp.761-766. https://doi.org/10.1016/j.procir.2015.01.013
  5. Capuzzi, S., Timelli, G., 2018 : Preparation and melting of scrap in aluminum recycling: A review, Metals, 8, pp.249-273. https://doi.org/10.3390/met8040249
  6. C. Han, S. H. Son, B-D. Ahn, et al., 2017 : Study on the recovery of metallic aluminum in black dross generated from the used beverage cans (UBC) recycling process with crushing mechanism, J. of Korean Inst. of Resources Recycling, 26(4), pp.71-78. https://doi.org/10.7844/kirr.2017.26.2.71
  7. Bae, M. A., Kim, H. D., and Lee, M. S., 2013 : Characteristic evaluation of SCR catalyst using aluminum dross, Journal of the Korea Academia-Industrial Cooperation Society, 14(10), pp.4672-4678. https://doi.org/10.5762/KAIS.2013.14.10.4672
  8. S. O. Adeosun, M. A. Usman, W. A. Ayoola, et al., 2012 : Evaluation of the mechanical properties of polypropylene-aluminum-dross composite, ISRN Polymer Science, 2012, pp.1-6.
  9. Abdulkadir, A., Ajayi, A., and Hassan, M. I., 2015 : Evaluating the chemical composition and the molar heat capacities of a white aluminum dross, Energy Procedia, 75, pp.2009-2105. https://doi.org/10.1016/j.egypro.2015.07.259
  10. J. H. Sandoval, G. H. G. Elizondo, A. M. Samuel, et al., 2014 : The ambient and high temperature deformation behavior of Al-Si-Cu-Mg alloy with minor Ti, Zr, Ni additions, Materials and Design, 58, pp.89-101. https://doi.org/10.1016/j.matdes.2014.01.041